

Snap-and-go: Helping Users Align Objects Without the
Modality of Traditional Snapping

Patrick Baudisch, Edward Cutrell, Ken Hinckley, and Adam Eversole
Microsoft Research

One Microsoft Way, Redmond, WA 98052, USA
{baudisch, cutrell, kenh, adame}@microsoft.com

ABSTRACT
Snapping is a widely used technique that helps users posi-
tion graphical objects precisely, e.g., to align them with a
grid or other graphical objects. Unfortunately, whenever
users want to position a dragged object close to such an
aligned location, they first need to deactivate snapping. We
propose snap-and-go, a snapping technique that overcomes
this limitation. By merely stopping dragged objects at
aligned positions, rather than “warping” them there, snap-
and-go helps users align objects, yet still allows placing
dragged objects anywhere else. While this approach of
inserting additional motor space renders snap-and-go
slightly slower than traditional snapping, snap-and-go sim-
plifies the user interface by eliminating the need for a deac-
tivation option and thereby allows introducing snapping to
application scenarios where traditional snapping is inappli-
cable. In our user studies, participants were able to align
objects up to 138% (1D) and 231% (2D) faster with snap-
and-go than without and snap-and-go proved robust against
the presence of distracting snap targets.

ACM Classification: H5.2 [Information interfaces and
presentation]: User Interfaces. - Graphical user interfaces.
Keywords: Alignment, snapping, snap-dragging, mouse
input, pseudo haptics. blutwurst
INTRODUCTION
Sometimes users need to perform precise graphical ma-
nipulations. As shown in Figure 2, users increase visual
clarity by aligning graphical objects with each other or by
scaling table columns to the same width. They align audio
and video segments to assure synchronicity and they make
precise selections in bitmap images to make sure subse-
quent filters get applied to the right areas.
Obtaining precise results by dragging or scaling an object
with the mouse requires considerable motor skill. There-
fore, many computer applications help users align objects.
Snapping (e.g., snap-dragging [5]) provides aligned posi-
tions with an attraction behavior sometimes described as
“magnetism” [3] or “gravity” [5]. Figure 1a illustrates this
with an example of a slider with a single snap location.

traditional snapping

snap-and-go

inaccessible

snap location

inaccessible

b

snap location

a

enlarged in
motor space only

Figure 1: (a) The problem: Traditional snapping
warps the knob of this slider to the target whenever
close, making it impossible to place the knob in the
areas marked inaccessible. (b) The proposed solu-
tion: Snap-and-go inserts additional motor space at
the snap location, thereby keeping all slider posi-
tions accessible.

Whenever the user drags the knob into the area surround-
ing the snap location the knob is automatically “warped” to
the snap location. Given that this attraction area is larger
than the snap location itself, here five pixels instead of one,
the alignment task is simplified significantly.
The downside of snapping, however, is that this magnetic
behavior can get in the user’s way. While users are often
likely to use the recommended snap locations, there are
cases where users want to place a dragged object else-
where. Continuing the examples from Figure 2: (a) To
align the baselines of these text fragments, a user may need
to move the right one down a little, but the grid keeps hold-
ing it back. (b) To fit a slightly longer word into this table
cell, the user may need to widen that column just a bit, but
it scales in steps causing the next column to overflow.
(c) The user tries to make space to allow the following
voice over clip start a little before the matching video seg-
ment, but scaling either snaps back or scales too much.
(d) To remove the frame around this picture, the user tries
to create a selection around it, but the lasso either snaps to
the entire image or leaves at least two pixels out. In these
and other scenarios, traditional snapping prevents users
from accomplishing their task, every time the user tries.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CHI 2005, April 2–7, 2005, Portland, Oregon, USA.
Copyright 2005 ACM 1-58113-998-5/05/0004…$5.00.

In the following sections, we take a closer look at why this
is problematic; present the snap-and-go alignment tech-
nique and explain how it avoids this problem; go over the
related work; and report three user studies in which snap-
and-go was found to improve participants’ speed when
aligning objects on the screen. We conclude with a sum-
mary of our findings and an outlook on future work.

 Pro Contra

Snapping Helps align Deactivate

Snap-and-g

 Pro Contra

Snapping Helps align Deactivate

snapping can help but also gets in way

c gd h

a e

fb

Figure 2: Traditional snapping helps (a) align ob-
jects in a graphics editor, (b) created equally sized
columns, (c) align audio clips with video clips, and
(d) assure that the entire bitmaps was selected,
(e-h) but gets in the way when users editing goals
are not foreseen by the application designer.

Traditional snapping requires deactivation
In order to enable the non-alignment tasks above, tradi-
tional snapping requires application designers to provide
snapping objects with an additional user interface that al-
lows users to disable snapping. This, however, turns out to
be more complex than expected.
A common approach is to allow users to de/activate snap-
ping by holding down a modifier key. However, the modi-
fier key approach is inapplicable if (1) the application is
already using all modifier keys for other purposes, such as
for switching tool options (e.g., Adobe Premiere), (2) there
are more snapping constraints than modifier keys (e.g.,
Microsoft Visio), or (3) the target audience are non-experts
and cannot be expected to discover modifier keys.
In these cases, application designers are forced to revert to
offering on-screen controls, such as a checkbox in a con-
text menu (Figure 3a). To improve discoverability, some
application designers place checkboxes right into the visi-
ble user interface, even though this adds to the complexity
of the interface (Figure 3b). In case there are too many
snapping options, deactivation ends up in an options dialog
(Figure 3c), again with low discoverability.
As the participants of our user study confirmed, snapping is
a useful and highly appreciated function. It saves users
time with every use and enables users with limited motor
skills to perform tasks they otherwise could not perform at
all. The price, however, is additional user interface com-
plexity—potentially an additional checkbox per snapping
function and time spent using it. Snap-and-go is designed
to overcome this limitation.

b

c

a

Figure 3: Checkboxes for deactivating snapping in
(a) Windows XP, (b) Media Player (c) and Visio.

SNAP-AND-GO
Snap-and-go is a snapping method that does not require
deactivation. Figure 1b illustrates this with the example of
a slider. Instead of reassigning motor space to snap loca-
tions, snap-and-go inserts additional motor space at the
snap locations. This is done by reducing the input gain of
the mouse while over the target. Rather than seeing the
knob jump to the target, users feel that the mouse temporar-
ily stops at the target—thus the name of the technique, de-
rived from the expression stop-and-go. Visual feedback
(e.g., Figure 14b) informs users about successful alignment.
Unlike traditional snapping, snap-and-go does not require
deactivation to allow users to avoid alignment. It achieves
this by managing motor space differently. Traditional snap-
ping requires a deactivation option because its approach of
redistributing motor space to the snap location leaves other
locations with no representation in motor space, which
renders these locations inaccessible. Snap-and-go’s ap-
proach of inserting additional motor space at the snap loca-
tion leaves the motor space of all other locations intact.
Replacing traditional snapping with snap-and-go allows
users to enjoy snapping functionality without the need to
learn about modifier keys or to sacrifice screen space for
checkbox interfaces (Figure 3). In addition, snap-and-go
can be applied to applications that do not offer snapping
today, such as to help users center audio balance or to drag
the time slider in a DVD player to the beginning of a chap-
ter. These scenarios have no space for a deactivation inter-
face, which is why traditional snapping has never been
applied to them. In its current version, snap-and-go is lim-
ited to platforms using an indirect input device—direct
input devices, such as pens or touch input do not allow
creating extra motor space.

SNAP-AND-GO IN 2D
The slider example given in the previous section is limited
to one-dimensional drag interactions. Snap-and-go in 2D is
similar to the 1D case in that they both insert additional
motor space to hold dragged objects at aligned locations. In
addition, however, alignment in 2D requires guiding
dragged objects to aligned positions. While dragging an
object in 1D will inevitably cross all locations between

start and end position, dragging an object in 2D traverses
only one path and therefore cannot guarantee that a
dragged object will ever get to the aligned position in the
first place. Since warping was the reason why traditional
snapping required deactivation, we need an alternative
mechanism for bringing the dragged object to the target.
Snap-and-go in 2D is based on two basic widgets that ap-
plication designers can overlay over screen objects to help
users align objects with them. Similar to the 1D case, these
widgets manipulate motor space, but they contain additions
to guide dragged objects to snap locations. To provide a
basis for explaining the actual snap-and-go widgets (Figure
5), we start by looking at the underlying concepts and evo-
lution history. These are illustrated by Figure 4.
(a) The problem: The user’s task is to align the partially
visible gray square at the bottom right with the two fully
visible gray squares. This requires placing the square at the
location marked with a dashed outline. The user’s drag
direction (shown as a black arrow) would miss the aligned
position.
To make the following steps easier to illustrate, we switch
to the visuals of a target acquisition task. We paint a knob
labeled onto the dragged object and a matching socket
labeled onto the position where the knob has to go in
order to align the objects. Both are only for the purpose of
illustration and are not visible to the user.
(b) We add an invisible “funnel” over the socket. The “fun-
nel” consists of two invisible guides. As the user drags the
square, the knob now hits the funnel and slides along that
funnel until the knob gets trapped at the socket in the fun-
nel’s center and the user is provided with visual feedback
confirming alignment (e.g., Figure 18).
The funnel widget simplifies 2D alignment for two reasons.
First, instead of having to simultaneously steer the mouse
to precise x and y coordinates, the funnel widget requires
users to only hit the entrance of the funnel and to follow
through. The funnel thereby turns the 2D acquisition task
the user would normally have to perform into a 1D acquisi-
tion task, also known as “crossing task” [1]. Second, the
new target of the user’s task, i.e., the entrance of the funnel
is significantly bigger than the single-pixel aligned position
that the user would otherwise have to acquire. Application
designers can configure this width by choosing a funnel of
appropriate size.
(c) Aligning the funnel and extending it into a cross.
Dragged objects reach the funnel center fastest when mak-
ing contact with the funnel at a more obtuse angle. While
an obtuse angle can be guaranteed by rotating the funnels
towards the mouse pointer, we choose a stationary funnel
aligned with the coordinate system of the screen. The bene-
fit of this is that it helps users align the dragged object in x
or y or both, which is often useful. Duplicating the funnel
for all four directions forms a cross widget (made of a hori-
zontal and a vertical guide), which allows users to align
objects dragged when coming from different directions.

a

e

cb

d

Figure 4: Evolution of snap-and-go in 2D

(d) Minimizing side-effects by using ‘frixels’: When trying
to drag an object to a different location on the screen, users
may accidentally hit a cross widget on the way. To mini-
mize disturbance, we replace the solid guides of the cross
widget with permeable ones. These are created using pixels
that slow drag motion down—we call this friction. To ob-
tain the desired guidance effect we need pixels with direc-
tional friction (or “frixels"). The vertical guide in this ex-
ample consists of frixels with a horizontal friction of 3 and
a vertical friction of 1, shown as pixels subdivided into
three thinner subpixels. Crossing such a frixel with the
mouse requires the user to move the mouse horizontally
three times as far than a normal pixel would. This causes
the path of the dragged object to be bent, guiding it through
the snap location at the funnel center. At the funnel center,
guides overlap and their friction values add up, here result-
ing in a center frixel with 3x3 friction. This frixel holds the
dragged object for a moment, which helps users release it.
(e) Frixel-based widgets create visual effects similar to
solid widgets. To obtain a precise trajectory, snap-and-go
tracks the position of the dragged object in terms of sub-
pixels. This extra information, however, is not presented to
the user; a user dragging an object through a frixel widget
sees the dragged object progress in terms of complete pix-
els. Figure 4e shows how the trajectory from Figure 4d
appears to the user as a series of discreet events: the
dragged object latches onto the vertical guide, it slides up
two pixels where it reaches the aligned position, gets held
there for a moment, and then slides along the horizontal
guide for two pixels until it breaks free.
We are now ready to explain the two widgets that form the
basis of snap-and-go in 2D. The plus widget shown in
Figure 5a is the basic widget for simultaneous alignment in
x and y. It is based on the cross widget from Figure 4d, but
it is of finite size and its friction is faded out towards the
periphery to minimize the impact on trajectories not aiming
for this target. The bar widget shown in Figure 5b is de-
signed for alignment in only one axis. It is made of tradi-
tional, non-directional friction, which avoids the here un-
necessary sideway-motion that directional frixels introduce.

a b

Figure 5: The basic widgets of snap-and-go in 2D
are (a) plus widget and (b) bar widget.

More complex widgets can be created by combining basic
widgets. The example shown in Figure 6a helps users snap
a connector line to a rectangle on screen. While the corre-
sponding object based on traditional snapping (Figure 6b)
allows users to connect only to edge centers (which can
lead to undesired “elbows”), the snap-and-go widget allows
users to also connect anywhere along the edge.

a

b

Figure 6: (a) This snap-and-go widget allows users
to connect a connector line to edge centers, but
also anywhere else on its edges. (b) The same wid-
get based on traditional supports only edge centers.

The example widgets shown in this section feature friction
values between 2 and 5. We chose these values to assure
the readability of the diagrams. While friction values that
low are possible (and we found significant effects for fric-
tion values as low as two), we found most users to prefer
higher friction values (20-30, see the user study sections).

RELATED WORK
Snap-and-go builds on three areas of related work, i.e.,
alignment techniques, constraints and snapping, and ma-
nipulation of motor space/mouse gain.
Alignment techniques in related work fall into two main
categories. The first category contains techniques that are
applied post-hoc, similar to traditional menu or toolbar-
based alignment functions: users pick two or more objects
and then choose a function, such as “stack vertically” from
a toolbar. The Alignment Stick [23] allows aligning objects
by pushing a ruler against both objects—the moment the
second object starts moving both objects are aligned. This
approach can reduce the need for selecting alignment func-
tions repeatedly and thus save user effort.
The second category consists of techniques that are applied
while dragging the object to be aligned. The original snap-

dragging technique by Bier [5] allows users to create and
place alignment objects; subsequently placed graphical
objects then automatically snap to these alignment objects.
By avoiding the need for an extra interaction step, snapping
eliminates the overhead faced by explicit alignment func-
tions. Various researchers have added to the concept of
snap-dragging by extending it to 3D [6, 2], adding anti-
gravity feedback to inform users when attempting to create
an illegal connection [13], or changing snapping grids
while dragging objects (HyperSnapping [20]). Snapping
has been applied to a wide range of applications, including
snapping and zipping windows together [4]. A particularly
simple and thus widely used alignment object is the grid.
The CAGE [2] extends grids such that they allow aligning
graphical objects with each other.
Another way of aligning objects is to describe the desired
goal state using constraints [8]. Constraints are supported
by a variety of toolkits, such as Juno [22] and their use
reaches back as far as to Sutherland’s Sketchpad [24].
While initially created with text interfaces, some systems
allow users to established constraints using snap-dragging
(augmented snapping [11]). Similarly, [3] allows users to
manipulate aligned groups without giving up alignment.
Other researchers suggested creating alignment behavior by
demonstration [18] or by generating several aligned ver-
sions and letting users pick (suggestive interfaces [14]).
Snapping and constraints restrict the space where objects
can be placed. Since this leads to the aforementioned prob-
lem of inaccessible space, snap-and-go inserts additional
motor space instead. Manipulation of motor space has been
studied in the field of pseudo haptics [17] and can be ap-
plied to any indirect pointing device. Lécuyer et al. showed
that changing the coupling between mouse motion and
mouse pointer motion can be used to simulate the haptic
sensation of texture [16].
Changes in the mouse-to-pointer gain have also been used
to help users overcome long distances and to acquire small
targets, e.g., object pointing [12], and lay lines [15]. Ex-
panding targets (in screen space and motor space) [21] was
found to help users acquire small targets. In combination
with an area cursor, making targets “sticky” was found to
help users with motor disabilities acquire small targets with
the mouse (sticky icons [27], semantic pointing [7], also
suggested by [25]). Unlike these methods, snap-and-go
offers a method for guiding the user to very small targets,
as we will discuss in more detail at the end of the following
section.

SNAP-AND-GO FOR TARGET ACQUISITION
Target acquisition techniques are relevant to the topic of
alignment, because an alignment operation can be reduced
to a target acquisition task, (e.g., the “Snap-and-go in 2D”
section above). Based on this similarity, we created an
adapted version of snap-and-go that serves as a target ac-
quisition aid. As shown in Figure 7a, the plus widget re-
mains the same, only the visuals change: Rather than guid-
ing a dragged object to an aligned position, the cross wid-

get now guides the mouse pointer to the target. Note that
plus widgets always guide the pointer to the target center,
thus work across target sizes (Figure 7b).
The snap-and-go target acquisition technique offers bene-
fits similar to the snap-and-go alignment technique: it al-
lows users to distinguish between multiple targets in close
proximity, where other techniques, such as snap-to-target
or area cursor [27] fail to distinguish between them.

a b

Figure 7: Snap-and-go as a target acquisition aid.

Note that the inverse is not true: a technique originally de-
signed to be a target acquisition technique cannot necessar-
ily serve as an alignment technique. Enhancing an align-
ment position with a sticky icon as shown in Figure 8a
turns the acquisition task into a crossing task, which can
simplify target acquisition [1]. Crossing that pixel, how-
ever, is still hard. Note that sticky icons cannot be used to
make a cross widget (Figure 8b); their non-directional fric-
tion will not guide the dragged object to the target. Figure
8c and d illustrate the difference: A sticky icon measuring
only one pixel is easily missed. Snap-and-go guides the
pointer or dragged object into the target, thereby creating a
fisheye effect in motor space.

c da b

Figure 8: (a, b) Attempt to use sticky icons to align
objects in 2D. (c) Sticky icons vs. (d) snap-and-go

IMPLEMENTATION
We created two implementations of snap-and-go, i.e., a
complete implementation in C# and a reduced prototype in
Macromedia Flash that we use for running user studies.
The Flash version supports 1D snap-and-go and the simpli-
fied version of 2D snap-and-go shown in Figure 4d. Figure
9 illustrates how this prototype implements snap-and-go by
subtracting friction at snap locations from traversed dis-
tances. A simple 2D cross widget can be obtained by run-
ning this code on x and y coordinates. (Note that this code
is abbreviated for space reasons; it misses code for updat-
ing the mouse pointer to keep knob and pointer together,
etc.).
The C# version supports the more advanced versions of 2D
snap-and-go described in this paper. The code is based on
rectangular friction objects, each of which defines a fric-
tion gradient of configurable direction and strength. By
combining multiple friction objects application designers

can create arbitrary friction widgets, including the plus and
the bar widgets and the example shown in Figure 6. By
integrating friction along the interpolated pointer path, the
program assures all traversed friction widgets will take
effect, even in cases where the stepwise nature of mouse
motion causes the pointer to jump over a widget without
actually touching it. Pointer position is tracked in subpix-
els. This assures that users can traverse friction widgets
even very slowly and at flat angles. Rounding errors would
otherwise cause progress across the widget to continuously
be rounded to zero, causing frixel widgets to appear solid.

snapTo(x, w, snapX) {
 if (snapAndGoActive) { // snap-and-go
 if (x >= snapX + w)

 return x - w + 1;
 else if (x > snapX)
 return snapX;
 else return x;
 } else { // traditional snapping
 if (x > snapX - w/2 && x < snapX + w/2)
 return snapX;
 else return x;
 }
}

Figure 9: Code fragment for 1D snap-and-go with a
single snap location of width w located at snapX
(top) in comparison to traditional snapping (bottom).
The function returns the location of the dragged
knob in dependence of the pointer position.

USER STUDIES
To objectively evaluate performance using snap-and-go,
we performed a series of three user studies. The partici-
pants’ task in all three studies was to align a dragged object
with a target location with pixel-accuracy. The studies dif-
fered in whether there was a single attractor at the target or
multiple attractors, and whether alignment took place in
one or two dimensions (Table 1).

 Snap-and-go compared
to traditional snapping…

Snap-and-go
with distractors…

…in 1D Study 1 Study 2
…in 2D Study 3

Table 1: Scope of the 3 studies reported below

USER STUDY 1: SNAP-AND-GO VS. SNAPPING IN 1D
The purpose of this first study was to verify that snap-and-
go indeed helps users align objects, to explore the impact
of attractor strength on task time, and to compare snap-and-
go with traditional snapping.

Task
The participants’ task was to drag the knob of a slider to a
highlighted target location as quickly as possible. Figure 10
shows the apparatus, which consisted of a horizontal slider
with a single highlighted target location, which in some
conditions was complemented with an attractor (see be-
low). For each trial the slider was reinitialized to the shown
state; target distance and attractor, however, were varied.

Task time was counted from the moment the knob was
picked up until the moment the knob was successfully
aligned and the participant had released the mouse button.
Each trial required successful alignment, so in cases where
participants released the knob anywhere but over the target,
they needed to pick it up again to complete the trial.

Figure 10: The apparatus. The user’s task was to
align the slider knob located at the left with the tar-
get located at the right.

Alignment required pixel precision. To make that possible
the knob was provided with the visuals shown in Figure
11a. To prevent the mouse pointer from occluding the tar-
get, participants were encouraged to drag the mouse
slightly downwards while dragging the knob (Figure 11c).

Interfaces
There were three main interface conditions, namely tradi-
tional snapping and snap-and-go, implementing the two
snapping functionalities illustrated by Figure 1, as well as
no snapping.

b

ca
Figure 11: Close-up of the knob reaching the target:
A black dash at the bottom of the knob helped visu-
ally verify alignment. (b) Attractors used “light bulb”
visuals and came in four sizes. (c) Dragging the
knob into an attractor caused it to light up.

In the no snapping condition, the target consisted only of
the vertical red line shown in Figure 11a. In the snapping
conditions, the target was complemented with an attractor,
turning the target into a snap location. Attractors behaved
differently depending on the snapping condition, but of-
fered the same visuals, a “light bulb” located below the
slider (Figure 11b and c). In their inactive state light bulbs
were black, but turned to bright green when the knob was
captured. To inform participants during the study about the
current attractor strengths, the width of the bulb on screen
reflected the width of the attractor in motor space (Figure
11a). Interface conditions thus differed in interactive be-
havior and visuals.

Experimental design
The study design was within subjects 2 x 4 x 4 (Snapping
Technique x Attractor Width x Target Distance) with 8

repetitions for each cell. Distances were 100, 200, 400, and
800 pixels, and Widths 5, 10, 18, and 34 pixels. In addi-
tion, participants performed 2 blocks of trials with snap-
ping off at each distance. For each trial, we recorded task
completion time and error, i.e., number of times the par-
ticipant dropped the knob before aligning it properly. Inter-
face order, distances, and sizes were counterbalanced.
Participants received training upfront and at the beginning
of each block. The study took about 35 min per participant.

Apparatus
The experiment was run on a PC running WindowsXP with
an 18” LCD monitor, at a resolution of 1280x1024 pixels
and 60Hz refresh rate, and driven by an nVidia graphics
card. The interface used in this study was implemented in
Macromedia Flash; its functioning was briefly described in
the Implementation section of this paper. The optical Mi-
crosoft IntelliMouse was set to a medium mouse speed and
participants were allowed to adjust it prior to the beginning
of the study.

Participants
Nine volunteers, (7 male) between the ages of 25 and 50
were recruited from our institution. Each received a lunch
coupon for our cafeteria as a gratuity for their time. All had
experience with graphical user interfaces and mice; three
were trackball users. All were right-handed.

Hypotheses
We had three hypotheses: (1) Participants would perform
faster with snap-and-go than with no snapping.
(2) Stronger attractors and shorter distances would reduce
task time. (3) Due to the additional distance in motor space,
participants should be slightly slower when using snap-
and-go then when using traditional snapping. However, we
expected the difference to be small.

Results
To correct for the skewing common to human response
time data we based our analyses on the median response
time across repetitions for each participant for each cell.

No Attractor 5 10 18 34
0

0.5

1

1.5

2

2.5

R
es

po
ns

e
Ti

m
e

(s
ec

on
ds

 ±
 S

E
M

)

Attractor Width (pixels)

Traditional Snapping

Snap-and-Go

Figure 12: Task time by snapping technique and at-
tractor width across all distances (+/- standard error
of the mean).

Snapping vs. no snapping: We compared the most conser-
vative case for the two snapping conditions (attractor size =
5) against no snapping for each distance. We performed a 3
x 4 (Snapping Technique x Target Distance) within sub-
jects analysis of variance. There were significant main ef-
fects for both Snapping Technique, F(2,16)=66.3, p<<0.01
and for Target Distance, F(3,24)=20.19, p<<0.01. Planned
comparisons of no snapping vs. traditional snapping and
vs. snap-and-go were also significant, F(1,8)=76.7,
p<<0.001 and F(1,8)=61.5, p<<0.01 respectively.
Snap-and-go vs. traditional snapping: We performed a 2 x
4 x 4 (Snapping Technique x Attractor Width x Target Dis-
tance) within subjects analysis of variance. We found sig-
nificant main effects for each factor. As expected, tradi-
tional snapping was faster than snap-and-go F(1,8)=24.0,
p<0.01. Also as expected, differences were fairly small,
ranging from 3% for attractor widths 5 and 10 to 14% for
attractor width 34 (Figure 12)
Impact of attractor width and distance on task time: Not
surprisingly, there were significant effects for Attractor
Width, F(3,24)=97.6, p<<0.01 and for Target Distance,
F(3,24)=224.4, p<<0.01; performance improved as attrac-
tor width increased and as target distance decreased. There
were no significant interactions. Given the similarity to
Fitts’ Law experiments, we compared user performance
against the Fitts Index of Difficulty (ID), a metric that com-
bines target width and movement distance into one measure
of acquisition difficulty [19, 10]. Figure 13 plots mean
movement time for each ID for the two snapping tech-
niques. The regression of movement time against ID for
each snapping technique was:

Snapping: MT=0.265 + 0.19*ID, r2=0.75
Snap-and-go: MT=0.487 + 0.159*ID, r2=0.59

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0 1 2 3 4 5 6 7 8

M
ov

em
en

t T
im

e
(s

ec
on

ds
 ±

 S
EM

)

Fitts Index of Difficulty

Traditional Snapping

Snap-and-Go

Figure 13: Fitts analysis of task times.

Note that the main divergence is at very low indices of dif-
ficulty. Once the task gets harder (e.g., longer movements,
smaller attractor sizes) performance in the two techniques
begins to converge.

Error rates were generally low, indicating that the target
and knob visuals did allow participants to visually validate
alignment sufficiently well. Differences in the error rates
for the three different snapping conditions were non sig-
nificant (No Snapping: 6.1%, Traditional Snapping: 3.7%,
Snap-and-Go: 2.6%).
Across snapping methods, eight of nine participants indi-
cated a preference for the stronger 34 and 18 width attrac-
tors; one participant preferred the weakest attractor strength
included in the study (5).

USER STUDY 2: IMPACT OF DISTRACTORS
Experiment 2 was designed to investigate two questions.
First, in the case of multiple potential targets (e.g., chapters
along a DVD player time slider) should an application de-
signer provide each chapter with an attractor or would the
additional attractors (distractors) get in the user’s way?
Second, even with multiple attractors being present, users
might at least occasionally want to target a non-enhanced
location. How will distractors affect that?
Task and interface were the same as in User Study 1, ex-
cept for the following two differences. First, in half of the
trials there was an attractor over the target, while in the
other half there was not. Second, there were up to four
“distractors” located in front of and behind of the target as
shown in Figure 14 (distances 64, 32, and 16 pixels in
front, and 16 pixels behind target, see Figure 14).

a b
Figure 14: Attractor/distractors: (a) Attractor at tar-
get and all four distractors (width 10). (b) No target
attractor, but three of the four distractors.

In this study, we only included snap-and-go but not tradi-
tional snapping. The reason is that for some distractor com-
binations traditional snapping would have required deacti-
vation (e.g., Figure 14b) and deactivation interfaces were
outside the scope of this study.
To keep the overall study time manageable, we limited the
design to a single distance and two attractor widths. The
resulting design was a (2 x 2 x 2 x 2 x 2 x 2) (Target At-
tractor on x Distractor 1 x Distractor 2 x Distractor 3 x
Distractor 4 x Attractor Width) with 4 repetitions for each
cell.
Nine participants hired from the community (6 male) be-
tween the ages of 18 and 60 participated in the study. All
were right-handed.

Results
The full factorial analysis was very difficult to interpret
because of interaction effects. Initial results showed no
significant effect for distractor position, so we simplified
the analysis by combining the four binary Distractor vari-

ables into a single variable, Number of Distractors (0, 1, 2,
3, or 4). We then did two analyses: one for when the Target
Attractor was on, and one for when it was off.
Target with attractor: We performed a 5 x 2 (Number of
Distractors x Attractor Width) within subjects analysis of
variance. As expected, there was a significant effect for the
Number of Distractors, F(4,32)=5.1, p<0.01 (Figure 15).
Interestingly, in this condition, there was no main effect for
the width of the attractor or an interaction. This might indi-
cate that the additional attraction caused by a larger attrac-
tor was at least partially compensated for by the equally
larger distraction caused by larger distractors.

0 1 2 3 4
0

0.5

1

1.5

2

2.5

R
es

po
ns

e
Ti

m
e

(s
ec

on
ds

 ±
 S

E
M

)

Number of Distractors

Width=10

Width=34

Figure 15: Task times with attractor at target and 0-
4 distractors.

Target without attractor: We performed the same analysis
for trials in which the target had no attractor, but there were
still up to four distractors. This time the only significant
effect was for Attractor Width (of the distractors). Unlike
the case with an attractor at the target, there is no tradeoff
here, so larger distractors impacted task time more. There
was no main effect for the Number of Distractors or a sig-
nificant interaction (Figure 16).

0 1 2 3 4
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

R
es

po
ns

e
Ti

m
e

(s
ec

on
ds

 ±
 S

EM
)

Number of Distractors

Width=10

Width=34

Figure 16: Task times without attractor at target and
0-5 distractors

These results provide some indication for deciding how
many locations to provide with an attractor: successfully
providing a target with an attractor saves users an average
of 1.9 seconds per alignment interaction; the addition of
four snapping locations not targeted by the user causes a
penalty of less than 0.5 seconds.

USER STUDY 3: SNAP-AND-GO IN 2D
In our third study, we replicated the first two experiments
for an alignment task in two dimensions. In this experiment
each participant performed two tasks, the first being the 2D
equivalent of the first user study, and the second being the
2D equivalent of the second user study. The study took
participants about an hour to complete.

Task and interfaces
In both tasks, the participants’ task was to align a square
with two other squares as illustrated by Figure 17.

a b c
Figure 17: Task 1 of the 2D study. Participants
aligned the dark square with the two lighter squares

Figure 18a illustrates the individual elements on the screen.
Depending on condition, there were up to six line-shaped
attractors. Three vertical attractors at the target location and
10 and 60 pixels right of it, three horizontal attractors at
and below the target location. In the snap-and-go condi-
tions attractors implemented the simplified snap-and-go
behavior described in Figure 4d. Upon contact with the
edge of the dragged rectangle attractor lines changed colors
from black to green and displayed a white, 10-pixel wide
halo. A light bulb at the end of each line informed partici-
pants about the current attractor strengths. The top left cor-
ner of the dragged rectangle was provided with a cross of
1-pixel lines to help visually verify alignment.

a b 45
30

15
0

Figure 18: (a) Apparatus used in the 2D study.
(b) The four start locations of the square.

Task 1: In correspondence to the first user study, only the
two attractors aligned with the target were present (Figure
17). The design was within subjects 2 x 4 x 4 (Snapping
Technique x Attractor Width x Approach Angle) with 8
repetitions for each cell. Distance to the target was 200
pixels and approach angles were 0, 15, 30, and 45 degrees,
as shown in Figure 18b. Participants also performed 2
blocks of trials with snapping off at each distance.
Task 2: The design was within subjects 2 x 2 x 2 x 2 x 2 x
2 (Target Attractor Vertical x Target Attractor Horizontal x
Distractor Vertical10 x Distractor Horizontal10 x Distrac-

tor Vertical60 x Distractor Horizontal60) with 4 repetitions
per cell. This means that the target was enhanced with only
the horizontal attractor, only the vertical attractor, both, or
none. In addition, up to four distractors were located at the
locations described above. Drag distance was always 200
pixels and all trials started at the 30 degree approach angle.
To prevent sequence effects on Task 1 caused by unbal-
anced training, all participants performed Task 1 first.
Participants: Eleven volunteers (11 male) recruited inter-
nally participated. The average age was 31 years (std dev
8.0); all were right-handed.
Hypotheses corresponded to the 1D case. However, the
cross widget used in the study causes more sideways drift
than a combination of plus and bar widgets. We therefore
expected distractors to have a slightly bigger impact.

Results
Task 1: snap-and-go vs. traditional snapping
As in previous experiments, we based our analyses on the
median response time across repetitions for each partici-
pant for each cell. We performed a 2 x 4 x 4 (Snapping
Technique x Attractor Width x Approach Angle) within
subjects analysis of variance.
Traditional snapping was significantly faster than snap-
and-go, F(1,10)=13.1, p<0.01 (Figure 19), and there was a
significant effect for Attractor Width, F(3,24)=97.6,
p<<0.01; performance improved as attractor width in-
creased. There were no significant interactions or main
effect for Approach Angle.

Performance vs. no snapping
We compared the most conservative case for the two snap-
ping conditions (attractor size = 5) against no snapping for
each distance. We performed a 3 x 4 (Snapping Technique
x Target Angle) within subjects analysis of variance. There
was a significant main effect for Snapping Technique,
F(2,20)=67.7, p<<0.01. Planned comparisons of no snap-
ping vs. traditional snapping and vs. snap-and-go were also
significant, F(1,10)=85.4, p<<0.001 and F(1,10)=60.0,
p<<0.01 respectively. See Figure 19. Again, there was no
significant effect for Target Angle.

No Attractor 5 10 18 34
0

0.5

1

1.5

2

2.5

3

3.5

R
es

po
ns

e
Ti

m
e

(s
ec

on
ds

 ±
 S

E
M

)

Attractor Width (pixels)

Traditional Snapping

Snap-and-Go

Figure 19: Task times in 2D by snapping method
and attractor width.

Again, error rates were generally low. Differences in the
error rates for the three different snapping conditions were
not significant (No Snapping: 5.1%, Traditional Snapping:
3.7%, Snap-and-Go: 4.5%).

No Target
Attractor

1 Target
Attractor

2 Target
Attractors

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

R
es

po
ns

e
Ti

m
e

(s
ec

on
ds

 ±
 S

E
M

)

Number of Distractors (Vertical & Horizontal)
10 2 3 4 10 2 3 4 10 2 3 4

Figure 20: Response times for 2D distractor task
with 0-4 distractors for each level of target attractor.

Task 2: 2D Distractor Task
As in experiment 2, the full factorial analysis was very dif-
ficult to interpret because of interaction effects. Initial re-
sults showed no significant effect for distractor position, so
we simplified the analysis by combining the four binary
Distractor variables into a single variable, Number of Dis-
tractors (0, 1, 2, 3, or 4). In addition, the two Target Attrac-
tor variables were reduced to 1, Number of Attractors (0 to
2).
We performed a 3 x 5 (Number of Target Attractors x
Number of Distractors) within subjects analysis of vari-
ance. As expected, there was a significant effect for the
Number of Distractors, F(4,40)=3.7, p<0.01, with move-
ment time steadily increasing with the number of distrac-
tors (Figure 20).There was also a large main effect for
Number of Target Attractors, F(2,20)=69.8, p<<0.01. As
the number of target attractors move from 0 to 1 and then
up to 2, performance improved markedly. There were no
significant interactions.

DISCUSSION
In the three studies presented above, we covered snap-and-
go in one and two dimensions. Across conditions, partici-
pants were significantly faster with snap-and-go than with-
out snapping support. For the largest attractor width speed-
ups were 138% in 1D and 231% in 2D. As expected, the
additional motor space snap-and-go caused it to be slightly
slower then traditional snapping, with differences of 3% in
1D and 14% in 2D. Snap-and-go turned out to be fairly
robust against the presence of distractors.

Resulting design improvements
With traditional snapping, dragged objects are visibly
warped when latching-on. During the first 1D study, some
participants expressed how this visual cue helped them
verify alignment. We therefore created a version of snap-
and-go visuals that emulates warping using anticipation
behavior [26, 9]: when latching on, the knob briefly over-

shoots and returns to the snap position; similarly, the knob
first moves backwards when breaking free. We also created
a version were the knob behaves as if dragged over little
vertical barriers left and right of the snap location.
We also observed that switching from a traditional snap-
ping condition to a snap-and-go condition caused some
participants to converge particularly slowly towards the
snap location—waiting for it to latch on. Since snap-and-
go requires users to drag the knob past the apparent snap
location, hesitant dragging continued all the way to the
actual snap location, which affected task time. Figure 21
shows a redesign with corrected visual affordance. Here
attractors are displayed behind the snap location. At the
expense of introducing additional motion, this design also
updates users about their location in motor space by mov-
ing the attractor against the mouse motion as the user
passes it.

Figure 21: Redesigned attractor visual that always
appears behind the target.

CONCLUSIONS
In this paper, we presented snap-and-go, an alignment tech-
nique that—unlike traditional snapping—does not require
deactivation. While slightly slower than traditional snap-
ping, the ability to omit the deactivation interface allows
deploying snap-and-go in application areas where addi-
tional interface complexity would be prohibitive.
We made three main contributions. First, we demonstrated
how manipulations of mouse gain can help users align ob-
jects. Second, we extended our technique to 2D by intro-
ducing the plus and the bar widgets that guide dragged
objects to snap locations. And third, we presented three
user studies evaluating snap-and-go in 1D and 2D in com-
parison with traditional snapping and no snapping.
As future work we plan to extend the snap-and-go concept
to indirect pointing devices, such as pen and touch input.

ACKNOWLEDGMENTS
We would like to thank Cameron Etezadi, Gavin Jancke,
Jordan Schwarz, and Phil Fawcett for their support of the
snap-and-go project, as well as George Robertson,
Maneesh Agrawala, Andy Wilson, and Noah Snavely for
their comments on a draft of this paper.

REFERENCES
1. Accot, J., and Zhai, S. More than dotting the i's Founda-

tions for crossing-based interfaces. In Proc. CHI’02. pp.
73–80.

2. Baudisch, P. The Cage: Efficient construction in 3D using
a cubic adaptive grid. In Proc. UIST'96, pp. 171–172.

3. Beaudouin-Lafon, M. & Mackay, W. Reification, Poly-
morphism and Reuse: Three Principles for Designing Vis-
ual Interfaces. In Proc. AVI’00, p.102–109.

4. Beaudouin-Lafon, M. Novel Interaction Techniques for
Overlapping Windows. In Proc. UIST’02. pp 153-154.

5. Bier, E. and Stone, M. Snap dragging. In Proc. SIG-
GRAPH’86, pp. 233–240.

6. Bier, E. Snap-dragging in three dimensions. In Proc. 1990
Symposium on Interactive 3D Graphics, pp. 193–204.

7. Blanch, R. Guiard, Y., Beaudouin-Lafon, M. Semantic
Pointing: Improving Target Acquisition with Control-
Display Ratio Adaptation. In Proc. CHI’04, pp. 519–526.

8. Borning, A. Defining constraints graphically. In Proc. CHI
86, pp. 137–143.

9. Chang, B.-W. and Ungar, D. Animation: From Cartoons to
the user interface. In Proc. UIST’93, pp. 45–55.

10. Fitts, P., The Information Capacity of the Human Motor
System in Controlling the Amplitude of Movement, Jour-
nal of Experimental Psychology, v 47, June 1954, pp. 381–
391.

11. Gleicher, M. and Witkin, A. Drawing with constraints. The
Visual Computer, 11(1):39–51, 1994.

12. Guiard, Y., Blanch, R., and Beaudouin-Lafon, M. Object
pointing: A complement to bitmap pointing in GUIs. In
Proc GI 2004, pp. 9-16.

13. Hudson, S. Adaptive semantic snapping—a technique for
semantic feedback at the lexical level. Proc CHI’90, pp.
65-70.

14. Igarashi, T., and Hughes, J.F. A Suggestive Interface for
3D Drawing . In Proc. UIST'01, pp.173-181.

15. Jul, S. This is a lot easier! Constrained movement speeds
navigation. In CHI’03 extended abstracts, pp. 776 - 777.

16. Lécuyer, A., Burkhardt, J.-M., Etienne, L. Feeling Bumps
and Holes without a Haptic Interface: the Perception of
Pseudo-Haptic Textures. In Proc. CHI 2004. pp 239–247.

17. Lécuyer, A., Coquillart, S., and Kheddar, A. Pseudo-
Haptic Feedback: Can Isometric Input Devices Simulate
Force Feedback? In Proc. IEEE VR2000, pp.18–22.

18. Lieberman, H. editor. Your Wish is My Command–
Programming by Example. Morgan Kaufmann Publishers,
2001.

19. MacKenzie, I.S. Fitts' law as a research and design tool in
human-computer interaction. Human-Computer Interaction
1992. 7:91–139.

20. Masui, T. HyperSnapping. In Proc. Symposia on Human-
Centric Comp.—Languages and Environ. 2001, pp. 188–
194.

21. Michael McGuffin, Ravin Balakrishnan. Acquisition of
Expanding Targets. In Proc. CHI’02, pp. 57-64.

22. Nelson. G. Juno, a constraint-based graphics system. Com-
puter Graphics, 19(3):235–243, Proc. SIGGRAPH’85.

23. Raisamo, R. and Räihä, K.-J. A new direct manipulation
technique for aligning objects in drawing programs. In
Proc. UIST’96, pp. 157–164.

24. Sutherland, I. Sketchpad: A Man Machine Graphical
Communication System. PhD thesis, MIT, 1963.

25. Swaminathan, K. and Sato, S. (1997) Interaction design for
large displays. In Interactions 4(1):15 – 24.

26. Thomas, B.H. and P. Calder. Applying cartoon animation
techniques to graphical user interfaces. TOCHI 8(3):198–
222, September 2001.

27. Worden, A., Walker, N., Bharat, K and Hudson, S. Making
Computers Easier for Older Adults to Use: Area Cursors
and Sticky Icons. In Proc. CHI ’97, pp. 266–271.

