
Scalable Fabric: Flexible Task Management 
George Robertson, Eric Horvitz, Mary Czerwinski, 

 Patrick Baudisch, Dugald Hutchings, Brian Meyers, Daniel Robbins, and Greg Smith 
Microsoft Research 
One Microsoft Way 

Redmond, WA 98052 USA 

{ggr; horvitz; marycz; baudisch; brianme; dcr; gregsmi}@microsoft.com; hutch@cc.gatech.edu 
  

ABSTRACT 
Our studies have shown that as displays become larger, users 
leave more windows open for easy multitasking. A larger number 
of windows, however, may increase the time that users spend 
arranging and switching between tasks. We present Scalable 
Fabric, a task management system designed to address problems 
with the proliferation of open windows on the PC desktop. 
Scalable Fabric couples window management with a flexible 
visual representation to provide a focus-plus-context solution to 
desktop complexity. Users interact with windows in a central 
focus region of the display in a normal manner, but when a user 
moves a window into the periphery, it shrinks in size, getting 
smaller as it nears the edge of the display. The window 
“minimize” action is redefined to return the window to its 
preferred location in the periphery, allowing windows to remain 
visible when not in use. Windows in the periphery may be 
grouped together into named tasks, and task switching is 
accomplished with a single mouse click. The spatial arrangement 
of tasks leverages human spatial memory to make task switching 
easier. We review the evolution of Scalable Fabric over three 
design iterations, including discussion of results from two user 
studies that were performed to compare the experience with 
Scalable Fabric to that of the Microsoft Windows XP TaskBar. 

Categories and Subject Descriptors 
H.5.2 [Information Interfaces and Presentation]: User 
Interfaces – graphical user interfaces, windowing systems.  

General Terms 
Management, Design, Experimentation, Human Factors. 

Keywords 
Task Management, Scaling, Interaction, Spatial Memory. 

1. INTRODUCTION 
Twenty years ago, Bannon et al. [1] observed that information 
workers often switch between concurrent tasks or activities. In 

Rooms, Card and Henderson [6] observed that tasks can be 
supported via the management of “working sets” of windows, in 
much the same way operating systems manage working sets in 
memory. Card and Henderson identified desirable properties of 
task management systems, including: fast task switching, fast task 
resumption, and easy reacquisition of the cognitive context 
associated with a task.  

Over the two decades since the work of Bannon et al., numerous 
virtual desktop managers have been built and each has exhibited 
some of these properties. Task management systems typically 
provide some efficient way of switching from one set of windows 
and applications to another set, as a basic form of task switching.  

Although workers may switch among tasks in a self-guided 
manner, a significant portion of task switching is caused by 
external interruptions [12]. Czerwinski, Cutrell, and Horvitz 
[7][9][[10] have sought to understand the influence of 
interruptions on task switching for information workers in order 
to design tools that can assist users to recover from interruptions.  

We have also been motivated to re-examine task switching and 
task management design opportunities in the face of the growing 
popularity of larger display and multiple monitor configurations. 
In an informal study at our organization, we found that when 
users shift to larger display surfaces, they leave more applications 
running and associated windows open. For example, we observed 
that single display users tend to keep an average or 4 windows 
open at once, while dual monitor users keep 12 and triple monitor 
users keep 18 windows open on average (N=16 users). This 
significant trend suggests that there is an opportunity for design 
innovation with windows and task management to make handling 
larger numbers of concurrent windows, potentially clustered by 
task, a fundamentally more natural and effective experience. 

We have developed a windows management methodology to 
exploit this opportunity. Scalable Fabric is a system designed to 
assist users manage tasks on the Windows desktop, allocating 
screen real estate in accordance with a user’s attention, using a 
focus-plus-context display. The periphery of the screen is used to 
hold scaled down live windows rather than hiding them with 
traditional windows minimization. In order to facilitate task 
switching, Scalable Fabric allows users to group collections of 
windows that are used together. We shall refer to groups of 
Windows that are used together as tasks.  We realize that this 
notion is not isomorphic with all conceptions of computer-centric 
“tasks,” but in our conversations with end users after studies of 
this topic, this notion appears to resonate easily with their 
description of their own computer work.  

 

 



In the remainder of the paper, we will first discuss related 
research. Then we will describe details of the Scalable Fabric 
methodology.  We present the results of a comparative user study 
of Scalable Fabric and the Windows TaskBar, and a longitudinal 
field study of Scalable Fabric. Finally, we discuss project 
directions and opportunities for future research. 

2. RELATED WORK ON TASK 
MANAGEMENT 
The most popular software system for task management is the 
virtual desktop manager. One of the earliest designs exploring a 
virtual desktop manager was Smalltalk Project Views [13]. Rooms 
[6][15] is probably the most well-known of these kinds of 
systems. A number of virtual desktop managers are currently 
available, and are described in [27]. We have not been able to find 
evidence that these systems have been evaluated in a formal 
manner. Thus, it is difficult to ascertain how easy they are to use 
or how well they integrate into real-world settings. 

In addition to virtual desktop managers, a number of novel 
solutions have been proposed, including extending the user’s 
desktop with additional low-resolution screen space [2], 
employing 3D environments as pursued by the TaskGallery [24] 
effort, providing a zoomable space as in Pad++ [3], and the use of 
time as the main axis and organizing principle [22]. Also, tiled 
window managers [5][26] have been created to address some of 
these same issues, as well as systems that involve the invocation 
of bumping processes among windows, to allow a window at 
focus to push others away [4][16]. 

We have pursued prototypes of temporal and spatial visualizations 
of users’ daily computing configurations. These designs use 
lightweight, temporal cues, such as the state of a user’s desktop at 
different times [19]. We have also sought to provide support for 
task-based visualizations and switching, in a similar vein to the 
work of Henderson & Card [15], Kaptelinin [17], Macintyre et al. 
[18] and Robertson et al. [24]. 

In distinction to the prior work, we have explored designs for 
virtual desktop organizers that do not replace the entire PC 
desktop with a new metaphor, but rather occupy the same 
conceptual and physical space that is already devoted to window 
management in the Windows OS – namely, the area in the 
periphery of the display surface. Using these prototypes, we have 
been performing longitudinal studies on the benefits of temporal 
and visual cues for enhancing memory about knowledge-based 
tasks, in order to facilitate task switching. We seek to understand 
the potential benefits from the use of these systems, and to iterate 
their design. For example, the Windows XP TaskBar provides 
“grouping by application” to address the problem of running out 
of bar space, e.g., all Word windows are grouped together, and all 
Internet Explorer windows are grouped together. Grouping by 
application, rather than by task, can create user confusion, as 
specific windows executing the same application may be 
conceptually unrelated to each other, and cross-application 
windows may be used together on one user activity [12]. 

We also address the challenge of accessibility of windows 
belonging to different tasks. While virtual desktop managers 
typically impose strict separation between tasks, we allow users to 
simultaneously display any subset of windows, even if they 
should be assigned to different tasks. Rooms’ placements 

mechanism allows a window to appear in multiple virtual 
desktops, but this requires forethought to set up. The approach in 
Scalable Fabric is more dynamic and requires no forethought. 

In related work, GroupBar [25] addresses these latter issues by 
evolving the Windows TaskBar to support task groups of 
windows on a bar, using the same minimized window 
representation used by TaskBar. 

Although GroupBar has most of the properties we were seeking in 
a task management system, the design does not effectively 
leverage human spatial and visual recognition memory. We know 
from user studies on the Data Mountain [23] and Task Gallery 
[24] that spatial memory works in a virtual environment similarly 
to the way it works in the physical world, and that user task 
performance is enhanced, particularly when the task involves 
retrieving items placed spatially. GroupBar makes limited use of 
spatial memory by allowing users to create multiple bars. 
Limitations stem from the bar design, which is linear, list-based, 
and does not expose much virtual space in which to place tasks.  

Scalable Fabric makes use of the periphery of the display for 
spatial layout of tasks, in addition to leveraging users’ efficient 
visual recognition memory for images [8].  Scalable Fabric allows 
users to leave windows and clusters of windows open and visible 
at all times via a process of scaling down and moving the 
windows and clusters to the periphery. This idea was partially 
inspired by observations we made with Data Mountain; items 
toward the back of the Data Mountain take much less space, but 
are still readily recognizable. It was also inspired by the scaling at 
the edges of the display in Flatland [21] and by ZoomScapes’ 
location based scaling mechanism [14]. While ZoomScapes is not 
a task management system, its management of sheets and groups 
of sheets is similar to Scalable Fabric’s management of windows 
and tasks. We shall review the differences in the next section. 

3. SCALABLE FABRIC BASICS 
In Scalable Fabric, the user defines a central focus area on the 
display surface by moving periphery boundary markers to desired 
locations. In Color Plate 1, these boundary markers are visible, 
but users usually hide the boundary markers unless they are 
changing the size or shape of the focus area, in which case the 
markers serve as resize handles. Within the focus area, windows 
behave as they normally do in the Windows desktop. The 
periphery contains windows and collections of windows (or tasks) 
that are not currently in use, but may be put to use at any moment. 
Windows in the periphery are smaller so that more tasks can be 
held there when the user is focusing on something else. With this 
metaphor, we believe users will rarely need to close or minimize 
windows in the traditional sense. Users can take advantage of 
extra screen real estate, especially on larger displays, to allow the 
peripheral windows to always be visible. 

When a user moves a window into the periphery, it shrinks 
monotonically with distance from the focus-periphery boundary, 
getting smaller as it nears the edge of the screen. When the user 
clicks on a window in the periphery, it returns to its last focus 
position; this is the new “restore” behavior, and is accomplished 
with a one second animation of the window moving from one 
location to the other. When the user “minimizes” a window in the 
focus area, e.g., by clicking the window’s ‘minimize’ button, it 
returns to its last peripheral position. 



Color Plate 1. Scalable Fabric showing the representation of three tasks as clusters of windows, and a single window being 
dragged from the focus area into the periphery.

 
Color Plate 2. Close-up of task (third design). 

When a window is moved in the periphery, other windows 
temporarily move out of the way. This is the occlusion avoidance 
behavior employed in the Data Mountain [23], and it makes it 
impossible to obscure one peripheral window with another. 

Scalable Fabric uses natural metaphors and gestures that allow 
users to define, access, and switch among tasks. To define tasks, 
windows in the periphery are grouped into clusters associated 
with a colored banner showing which cluster they are in. Moving 
a window near a cluster marker makes it part of that cluster. When 

clusters are moved around, they avoid each other similar to the 
way windows avoid one another. The whole point of this behavior 
is to make it easy for users to construct task clusters by dragging 
and dropping windows onto groups of windows. 

To create a new task, the user simply moves a window near 
another that is not in a task. The new task is then created 
implicitly. The user can return later and rename the task. Until the 
task is named, it is ephemeral. That is, if the last but one window 
is moved out of an ephemeral task, the task will be un-created 
(i.e., the task marker will disappear). 

Color Plate 3. Task highlighting during hover. 



Users can use other natural gestures to access and toggle among 
tasks efficiently. When a user clicks on a task marker, the entire 
task is selected, restoring its windows to their focus positions. If 
the user clicks on a task marker when all of its windows are 
currently in the focus area, each window returns to its peripheral 
position. If one task is selected and the user clicks on a different 
task marker, a task switch occurs, i.e., all windows of the current 
task move to their peripheral positions, and the windows 
comprising the task being selected in the periphery move to their 
previous configuration in the focus area. 

The user’s choice of focus area location and size is influenced by 
the configuration and capabilities of the physical displays. For 
example, on a triple-monitor display, some users may prefer to 
define the central monitor as the focus area, with no upper or 
lower peripheral regions and the side monitors as the side 
peripheral regions. 

The information in the periphery may be occasionally obscured by 
open windows (e.g., a maximized window). This can be resolved 
with two mechanisms. First, any interaction that involves the 
periphery must make all the periphery windows and task markers 
visible. Second, there must be some way to make the periphery 
visible on demand. The solution we have adopted is similar to the 
TaskBar auto-hide mechanism. Any time the user bumps the 
cursor into any screen edge, the periphery auto-reveals itself. If 
the user interacts with any window not in the periphery, the 
periphery will drop to the bottom of the window z-order.  

Scalable Fabric is a focus-plus-context display in the sense that 
users focusing their attention on a primary task are provided with 
the context of other work (i.e., competing or potentially related 
tasks) displayed in the user’s periphery. 

For moving and scaling windows and groups of windows in 
Scalable Fabric, we considered findings from ZoomScapes [14]. 
As windows are rectangles rather than points, it is important to 
identify the point about which scaling occurs.  Like ZoomScapes, 
Scalable Fabric uses the cursor location (i.e., the drag point) as 
the scale point.  We experimented with several different 
alternatives, and concur with the earlier work that the cursor 
position is the most useful scale point. 

When moving a group, scaling the windows in the group is not 
sufficient. Zoomscapes scales the distance between the center of 
the sheets and the cursor dragging point.  In Scalable Fabric, we 
found a more pleasing effect by scaling the distances from the 
window centers to the center of the group.  That is, as the group 
gets smaller, the windows move closer together. 

When a window moves across the scaling boundary, an abrupt 
change in scale is disconcerting.  Zoomscapes solves this by have 
a bridge zone where a sharp ramp in scaling is applied.  Scalable 
Fabric uses a different approach, and applies a half-second 
transition animation to the new scale.  This appears to be more 
graceful than the ramp-zone approach. 

4. ITERATIVE DESIGN 
We have pursued a process of iterative design for refining and 
testing versions of Scalable Fabric. To date, we have created three 
implementations of the system.   

The first version of Scalable Fabric was a prototype that worked 
with images of windows, which allowed us to refine the visual 

design and interaction behaviors. Color Plate 1 is a screenshot of 
the first design prototype with the addition of an indication of 
what it is like to drag a window from the focus area to the 
periphery. Informal studies were conducted to collect usability 
issues to drive the second design iteration. 

The second design worked with real windows on the Windows 
Desktop. A user study comparing Scalable Fabric to the Windows 
XP Taskbar suggested that Scalable Fabric was easily learned and 
considered valuable by the participants, but several usability 
issues were noted. A study showed no significant difference in 
task performance time between the two approaches.  

The third version of Scalable Fabric was developed as a set of 
refinements on the second design.  Color Plate 2 shows a close-up 
of the appearance of windows and task markers, with the cursor 
hovering over one window to show its title tooltip.  Most of the 
time the task marker appears as displayed in Color Plate 2.  
However, if the user hovers over the marker or moves a window 
into the task group, a box appears as rendered in Color Pate 3. 

In order to gather further information about how people actually 
use virtual desktop managers, and to begin to understand in a 
more detailed manner how Scalable Fabric might be used in real 
situations, we conducted a second, longitudinal study with 13 
participants using their real systems and tasks. Although we 
confirmed that we had solved many of the usability issues 
identified in the first study, the second study revealed new 
opportunities for design iteration.  Specifically, as core issues with 
the design are addressed, system performance and bug fixes have 
become more important to our end users.  This is natural at this 
stage of the design process, and we will continue to track down 
any remaining bugs and refine performance as part of future work.  

Approximately 200 people have used Scalable Fabric over the last 
year.  The response has generally been quite favorable, with many 
users continuing to use it.  However, several performance and 
behavior problems have led some people to stop using the 
prototype after an evaluation period.  Some of these problems can 
be addressed with changes to the current implementation, but 
others will require rewriting Scalable Fabric as a replacement for 
the legacy window manager.  

5. CONCLUSIONS 
Scalable Fabric provides basic task management, using a focus-
plus-context spatial metaphor.  Windows in a central focus area 
behave as usual, while windows in the display periphery are 
scaled down “minimized” windows.  By taking less space, the 
periphery windows can remain open and live.  Task switching is 
accomplished by a single mouse click.  Two user studies have 
provided guidance for several phases of iterative design of 
Scalable Fabric, and suggest that users prefer this approach to the 
standard Windows TaskBar. The studies have also identified 
problems that still need to be addressed. Most of these problems 
can be attributed to the decision to build Scalable Fabric on top of 
an existing window manager rather than building it within or 
replacing the window manager. A future implementation of 
Scalable Fabric will address these issues. 

6. ACKNOWLEDGMENTS 
We would like to thank Francois Guimbretiere for discussions 
about the relationship between Scalable Fabric and Zoomscapes. 



7. REFERENCES 
[1] Bannon, L., Cypher, A., Greenspan, S., and Monty, M. 

(1983). Evaluation and analysis of user’s activity 
organization”. In Proc. CHI’83 (pp. 54-57). NY: ACM. 

[2] Baudisch, P., Good, N., Stewart, P. (2001). Focus plus 
context screens: combining display technology with 
visualization techniques. In Proc UIST 2001 (pp. 31-40). 

[3] Bederson, B. & Hollan, J. (1994). Pad++: A zooming 
graphical interface for exploring alternative interface physics. 
In Proc. UIST’94 (pp. 17-26). 

[4] Bell, B. and Feiner, S. (2000). Dynamic space management 
for user interfaces. In Proc. UIST’00, (pp. 238-248). 

[5] Bly, S., Rosenberg, J. (1986). A comparison of tiled and 
overlapping windows. In Proc. CHI ’86 (pp. 101-106).  

[6] Card, S.K. & Henderson, A.H. Jr. (1987). A multiple, 
virtual-workspace interface to support user task switching. In 
Proc. CHI+GI 1987 (pp. 53-59). NY: ACM. 

[7] Cutrell, E., Czerwinski, M. & Horvitz, E. (2001). 
Notification, Disruption and Memory: Effects of Messaging 
Interruptions on Memory and Performance. In Human-
Computer Interaction--Interact '01 (pp. 263-269). IOS Press. 

[8] Czerwinski, M., van Dantzich, M., Robertson, G., & 
Hoffman, H. (1999). The contribution of thumbnail image, 
mouse-over text and spatial location memory to web page 
retrieval in 3D. In Proc. Interact 1999 (pp. 163-170), 
Edinburgh, Scotland, IOS Press. 

[9] Czerwinski, M., Cutrell, E. & Horvitz, E. (2000). Instant 
Messaging and Interruption: Influence of Task Type on 
Performance. In Proc. OZCHI 2000 (pp. 356-361). Sydney, 
Australia.  

[10] Czerwinski, M., Cutrell, E. & Horvitz, E. (2000b). Instant 
Messaging: Effects of Relevance and Time. Proc. HCI 2000, 
Vol. 2, (pp. 71-76). British Computer Society. 

[11] Czerwinski, M. & Horvitz, E. (2002). Memory for Daily 
Computing Events. In Proc. HCI 2002, (pp. 230-245). 

[12] Czerwinski, M., Horvitz, E. & Wilhite, S. (2004).  A diary 
study of task switching and interruptions.  To appear in Proc.  
CHI 2004, ACM press. 

[13] Goldberg, A. (1983). Smalltalk-80. NY: Addison-Wesley. 
[14] Guimbretiere, F., Stone, M., and Winograd, T. (2001). Fluid 

interaction with high-resolution wall-size displays. In 
Proc.UIST’01, (pp. 21-30). NY: ACM. 

[15] Henderson, D. A. Jr., Card, S.K. (1987). Rooms: The use of 
multiple virtual workspaces to reduce space contention in a 

window-based graphical user interface. ACM Transactions 
on Graphics, 5 (3), 211-243.  

[16] Kandogan, E. and Shneiderman, B. (1997). Elastic 
Windows: evaluation of multi-window operations. In Proc. 
CHI 97. (pp. 250-257). NY:ACM. 

[17] Kaptelinin, V. (2002). UMEA: User-monitoring environment 
for activities. In Proc. UIST’02 Companion, (pp. 31-32). 

[18] MacIntyre, B., Mynatt, E., Voida, S., Hansen, K., Tullio, J., 
Corso, G. (2001). Support for multitasking and background 
awareness using interactive peripheral displays. In Proc. 
UIST 2001, (pp. 41-50). 

[19] Malone, T. W. (1983). How do people organize their desks? 
Implications for the design of office automation systems, 
ACM Transactions on Office Information Systems 1 (1), 
99-112. 

[20] Myers, B. (1988). Window interfaces: A taxonomy of 
window manager user interfaces, IEEE Computer Graphics 
and Applications, 8 (5), 65-84.  

[21] Mynatt, E., Igarashi, T., Edwards, W., and LaMarca, A. 
(1999). Flatland: new dimensions in office whiteboards. In 
Proc. CHI’99, (pp. 346-353). 

[22] Rekimoto, J. (1999). Time-machine computing: A time-
centric approach for the information environment. In Proc 
UIST’99 (pp. 45-54).  

[23] Robertson, G., Czerwinski, M., Larson, K., Robbins, D., 
Thiel, D., and van Dantzich, M. (1998). Data Mountain: 
Using spatial memory for document management. In Proc. 
UIST’98 (pp. 153-162). 

[24] Robertson, G. van Dantzich, M., Robbins, D., Czerwinski, 
M., Hinckley, K., Risden, K., Thiel, D., Gorokhovsky, V. 
(2000). The task gallery: a 3D window manager. In Proc 
CHI’00 (pp. 494-501).  

[25] Smith, G., Baudisch, P., Robertson, G., Czerwinski, M., 
Meyers, B., Robbins, D., and Andrews, D. (2003). 
GroupBar: The TaskBar Evolved. In Proc. OZCHI’03. 

[26] Teitelman, W. (1986).Ten years of window system – A 
retrospective view. In Hopgood, F., Duce, D., Fielding, E., 
Robinson, K., & Williams, A. (Eds.). Methodology of 
Window Management. Berlin: Springer-Verlag. 

[27] XDesk Software (2003), About Virtual Desktop Managers, 
http://www.virtual-desktop.info. 

 
 

 


