
 

 

Multiblending: displaying overlapping windows 
simultaneously without the drawbacks of alpha blending

Patrick Baudisch  
Microsoft Research  

One Microsoft Way, Redmond, WA 98052, USA  
  

Carl Gutwin  
Computer Science, University of Saskatchewan 

57 Campus Drive, Saskatoon, SK S7N 5A9, Canada  
carl.gutwin@usask.ca 

ABSTRACT 
Alpha blending allows the simultaneous display of over-
lapping windows—such as palette windows in visual 
workspaces. Although alpha blending has been used in 
some applications, such as games, it has not been widely 
adopted. One reason for the limited acceptance is that in 
many scenarios, alpha blending compromises the readabil-
ity of content. We introduce a new blending mechanism 
called multiblending that uses a vector of blending weights, 
one for each class of features, rather than a single transpar-
ency value. Multiblending can in most cases be automati-
cally optimized to preserve the most relevant features of 
both the palette and the background window. We present 
the results of a user study in which multiblended palettes 
provided higher recognizability of both the background and 
the palette than the best participating version of alpha 
blending. 
Categories & Subject Descriptors: H5.2 [Information 
interfaces and presentation]: User Interfaces. - Graphical 
user interfaces. 
General Terms: Human Factors, Design. 
Keywords: Alpha blending, semitransparency, windows.blutwurst 

INTRODUCTION 
Overlapping windows and 2½-D interfaces were developed 
to let applications use limited screen space multiple times. 
However, since overlapping windows occlude each other, 
users have to switch back and forth between windows in 
order to access the different tools and information. This 
switching becomes especially cumbersome when the over-
lapping windows belong to the same application. Many 
visual applications make tools and controls available in 
permanently visible interface components, such as tool 
palettes. Palettes can be positioned on top of the workspace 
to allow tools to be closer to the area where the work is 
being done. However, this causes the palettes to occlude an 
area of the underlying data in the workspace (e.g. Figure 
1a). Palettes are a tradeoff of 2½D interfaces, between the 
availability of objects in the foreground and background 
layers. The more available (i.e. larger or closer) the tools in 
a palette, the more difficult it is to see and use the visual 
data in the workspace below. In the image processing ap-
plication of Figure 1a, tasks such as selecting a larger ob- 

a b  
Figure 1: (a) An image processing application with a 
selection of frequently used tool palettes. (b) Alpha 
blended palettes give a better idea of the periphery, 
but color, brightness, and contrast of the semi-
occluded areas are still affected. 

ject, checking whether retouched elements still match the 
overall lighting situation, or getting an overview of the pic-
ture will require the user to hide palettes before proceeding. 
In order to deal with the many palette windows that come 
with many professional applications, such as CAD or soft-
ware development environments, users often use additional 
screen space such as a second monitor [7]. The drawback 
of this solution is that palettes are further away, and acquir-
ing them thus takes more time. Also, adding screen space is 
not an option for users on mobile computing devices. 
Semitransparent palettes have been proposed and imple-
mented as a solution to the problem of occlusion (e.g. [9]). 
Semitransparency, using a technique called alpha blending 
[15], allows two windows to be displayed on the same 
piece of screen space. Semitransparent palettes show the 
contents of both windows, reducing the need for switching 
between overlapping windows. 
However, semitransparency still seems far from reaching 
its potential. While it has been adopted into some gaming 
applications such as EverQuest [8], and is available on a 
window level in some operating systems (e.g., Linux and 
MacOS X), it has not been implemented as part of any 
multi-window/multi-palette application even though it 
seems to be an obvious answer to an ongoing problem. One 
reason for the limited acceptance seems to be that for many 
scenarios, alpha blending affects the readability of window 
contents too much (Figure 1b). 
In this paper, we argue that we can make window blending 
applicable to a wider range of applications by extending 
alpha blending to selectively preserve image features. The 
new technique, called multiblending, blends the individual 
color and texture features of palette and window separately, 
using a range of image processing techniques. This allows 
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us to assign higher visibility to the features most relevant to 
the user’s task at hand. Using multiblending, we can create 
blended palettes that better preserve the visibility of both 
the background and foreground windows (Figure 2). 

 
Figure 2: This multiblending style (“glass palettes”) 
allows higher fidelity in the background image, and 
still shows relevant features of the palettes. (More 
close-ups: Figure 3, Figure 7, and Figure 8). 

In this paper, we introduce multiblending and report on 
user studies showing that multiblending improves readabil-
ity compared to alpha blending. First, we review related 
work on the problem of window space in 2½D interfaces. 

RELATED WORK: OVERLAP IN 2½D INTERFACES 
In applications that use palettes and other floating win-
dows, several techniques have been proposed to help man-
age the tradeoff between the visibility of palette and back-
ground. Although some research has been done in tech-
niques for placing palettes into areas that result in the least 
amount of conflict [4], the majority of work looks at vari-
ous methods for diminishing palettes in situ.  
These techniques reduce either the palette’s size or opacity. 
The techniques that reduce palette size either shrink the 
entire palette (e.g., expanding targets [11]), eliminate eve-
rything but the palette’s title bar (e.g., window shades [13], 
a particular instance of semantic zooming [14]), or hide the 
palette altogether (e.g., Adobe® Photoshop® [2]). 
The techniques that reduce opacity either remove some 
pixels entirely or all pixels by a certain amount. Overlays 
make part of the palette’s surface transparent. They have 
been used for adding titles to video (i.e. chroma-keying), in 
head-up displays to show flight data (e.g. [16]), in games to 
show maps and messages (e.g. Diablo II), for workspace 
tools such as magic lenses [5], and in workspaces to show 
global overviews [6]. Alpha blending [15] also known as 
semitransparency) blends palette windows with the back-
ground by computing a weighted sum of pixel colors. This 

can be done on a per-pixel basis, as defined by the so-
called alpha map. This allows content from both palette and 
background window to remain visible to some degree. Al-
pha blending has been used in a number of scenarios, in-
cluding popup menus [9], tool glasses and magic lenses [5], 
and multiple representations of the same image [10]. Sev-
eral operating systems including Linux/KDE and Mac OS 
10 also allow for semitransparent windows, and add-ons 
for window managers are available that manage the trans-
parency of application windows (e.g., [1]). 
Since all diminishing techniques affect the readability of 
the palette, they typically provide a ‘restored’ representa-
tion in addition to the diminished version that is easier to 
read and manipulate. The individual techniques switch be-
tween representations either manually or automatically. 
Manual techniques include double-clicking the diminished 
palette [13], selecting a ‘restore’ operation from a menu, or 
hitting a keyboard shortcut [2]. The automatic mechanisms 
proposed so far are based on the proximity of the mouse 
cursor [8]. Moving the mouse cursor towards the palette 
restores the palette either gradually or abruptly, as a 
threshold distance is passed. All these techniques fully re-
store palettes when the mouse reaches the palette; the 
boundaries of the palette in motor space thereby remain 
unchanged, aiding acquisition. 
Of all the diminishing techniques, alpha blending has been 
paid the most attention, and several results have appeared 
that consider the usability of semi-transparent tool win-
dows. Harrison and colleagues [9] found that 50% trans-
parent palettes can greatly improve workspace visibility 
without degrading icon selection performance. Other stud-
ies have shown that users can perform targeting tasks well 
with 25% or even 10% opacity, depending on the complex-
ity of the workspace data [8]. 
Unlike techniques that reduce the size of the palette, alpha 
blending has the benefit that all palette content remains on 
the screen—although in diminished form. Alpha-blending 
thus potentially allows users to monitor changing palette 
content, such as a display of the cursor coordinates or 
warning signs. The drawback of alpha blending is that it 
causes the contents of palette and background to interfere 
with each other. This interference will often make both 
palette and background hard to read and makes it hard to 
say whether two features belong to the same window. We 
will discuss these issues in more detail as we introduce our 
proposed blending technique in the following section. 

MULTIBLENDING 
To address the drawbacks of alpha blending, we have de-
veloped a new technique called multiblending that allows 
the use of different blending functions for different visual 
features. Multiblending is based on the observation that for 
a particular task, users typically need only a subset of the 
visual features in the involved windows or palettes. Mul-
tiblending modifies the blending process to enable it to 
preserve more of these relevant features—if necessary at 
the expense of reducing other, less relevant features. To 
explain this, we first describe what we mean by “features.” 



 

 

Feature selection is based on human vision 
Our current approach to multiblending is based on four 
classes of features: three color classes and one class of tex-
tural features. We focus on ‘apparent’ features—that is, 
those that are particularly easily perceived by humans.  
The three classes of color feature used by multiblending are 
the ones encoded by the CIE Lab color model [12]. CIE 
Lab is a perception-oriented color model that represents 
color as luminance, red-green and blue-yellow difference. 
We picked this model because it largely matches the color 
model the human visual apparatus uses when sending color 
information to the brain.  
Multiblending uses only a single textural feature class—the 
presence of high-frequency data, such as edges or other 
areas of high contrast in the image. The human visual appa-
ratus has specialized cells that perceive contrast (e.g. re-
ceptive fields [16]). 
When analyzing Figure 1 with respect to colors and high 
frequencies, we see that the screen is not as crowded as it 
seems. Most parts of the palettes are grayscale, i.e., contain 
no red/green and blue/yellow information; the photograph, 
on the other hand, contains large areas that contain no visi-
ble edges. It is these “unpopulated” areas that we exploit in 
our approach. 
The limits of alpha blending 
Having defined this set of features, we can now better ex-
press the limitations of alpha blending. In terms of color, 
alpha blending computes the output image as a weighted 
sum of the two source windows. This makes the red, green, 
and blue channel, as well as the channels of the CIE Lab 
representation, into weighted sums—each weighted by the 
same ratio (the blending parameter alpha of that pixel). In 
other words, all color channels get diluted by the respective 
contribution of the other window. In terms of texture, alpha 
blending is subject to interference effects, since image fre-
quencies in the two images will reinforce each other in 
some cases, while they will cancel out in others, depending 
on how the two images are aligned. If a feature is sensitive 
to that dilution or interference, it disappears. If that feature 
would have been relevant to the user’s task, alpha blending 
becomes unsuitable. 
A further drawback that affects all features is that alpha 
blending introduces visual ambiguity. Looking at a blended 
image, it is hard to say which layer a specific feature be-
longs to (see, for example, Figure 6a). Also, the relation-
ships between features become obscured: it can be difficult 
to determine whether two observed features belong to the 
same window and thus are semantically related. 

Overcoming those limits with multiblending 
In order to prevent relevant features from disappearing, 
multiblending assigns each class of features an individual 
weight, instead of using the single global weight used by 
alpha blending. 
Even though theoretically, multiblending allows weights to 
range from zero to one, it will often be beneficial to limit 
the technique to weights that are either zero or one. In other 

words, one of the two windows will give up a feature class 
entirely in order to allow the respective feature in the other 
window to stand out. A palette window may, for example, 
be desaturated in order to not affect color in the back-
ground image. Limiting multiblending to Boolean weights 
eliminates visual ambiguity; now each type of feature can 
stem from only one of the two windows, and all features of 
the same type belong to the same window, which clarifies 
their grouping. Interference that is caused by the same fea-
tures stemming from different windows is eliminated. 
Converting a regular opaque palette into a multiblending 
palette thus mainly requires deciding for each of the four 
feature classes which windows to take these features from. 
The actual computation is then straightforward. Given that 
color is represented using the CIE Lab model, computing 
output color only requires picking each channel from either 
palette or window and reassembling them. The removal of 
texture information is accomplished with filters that blur or 
sharpen images. These filters generally do not interact with 
the overall color of a window; whenever making one pixel 
darker, these filters make some nearby pixel lighter. 

MAKING MULTIBLENDED PALETTES 
In this section, we detail the steps used to create a type of 
multiblended palette introduced earlier as the glass palette, 
using Boolean weights for each feature class. These Boo-
lean values are provided by the designer, an effort roughly 
equivalent to the input required for alpha blending, where 
only a single, but therefore real-valued opacity value needs 
to be provided. We will show methods for manual im-
provement in a later section. Note that many of the follow-
ing examples require seeing a color version of this paper. 
The scenario for our walkthrough is an image editing/re-
touching session in Adobe Photoshop [2]. The goal of pal-
ette creation is to support this task by showing as much of 
the surfaces and color of the photograph. The final result of 
this walkthrough is shown in Figure 2. 

A walkthrough in five steps 
Figure 3 shows a part of the screen that contains several 
palettes floating on top of a photograph the user intends to 
retouch. By default, the tool palette is opaque and occludes 
the photograph (Figure 3a). When the palette is alpha-
blended with the background (Figure 3b), the photograph 
shows through, but its contrast and colors are still affected. 
Step 1: Desaturating: The Photoshop tool palette contains 
no useful color information, so we eliminate it by desatu-
rating (Figure 3c). To fully preserve the color of the photo-
graph (red/green and blue/yellow, but not luminance), we 
use a blending function that combines the palette’s lumi-
nance with the red/green and blue/yellow information from 
the underlying photograph. Each of the color channels is 
taken from only one of the two windows, which prevents 
them from getting diluted. 
Step 2: Making surfaces transparent: The tool palette 
mainly consists of icons, and it is the icon’s contours that 
are most important for recognition. The icon’s surfaces, on 
the other hand, seem to play a lesser role. We therefore 



 

 

make the palettes surfaces transparent as shown in Figure 
3d. In detail, this is done as follows. First, we apply a high-
pass filter (here an emboss filter) to bring out edges. This 
produces a grayscale image with light and dark edges. The 
edges can be interpreted as a 3D effect; but most impor-
tantly, the effect makes the edges stand out against light 
and dark backgrounds. We then remap that grayscale image 
to translucency by using an appropriate blending function 
(a so-called “linear light” blending function, for details on 
filters and blending functions, see [2]). 

a b c d  
Figure 3: A tool palette blended using (a) opacity, 
(b) alpha blending, (c) luminosity, and (d) emboss.  

Step 3: Blurring noisy backgrounds: Noisy backgrounds 
interfere with multiblended palettes as much as they do 
with alpha-blended palettes (Figure 4a and b), making both 
palettes virtually disappear. Multiblending therefore elimi-
nates high frequencies from the background image by ap-
plying a blur filter to the background behind the palette 
(Figure 4c). Multiblending uses a smart filter that moves 
with the palette, and that blurs only those areas that ex-
ceeds a certain contrast threshold, a concept similar to the 
“unsharp mask” filter in [2]. The resulting palette is easy to 
read; all high contrast content is clearly on the palette, 
while all low contrast content is in the photograph behind 
it. The resulting palette seems to be made of a piece of 
frosted glass1, a palette style we will refer to as the glass 
palette. 
Step 4: Area-based opacity based on usage data. In Figure 
5a and b, a significant part of the palette consists of win-
dow decoration, unused icons, or labels that never change, 
such as “R”, “G”, and “B”. Once users have learned such 
static palette elements, they offer little information to the 
user. While varying opacity across alpha palettes leads to a 
noisy appearance, diminishing parts of glass palettes works 
well and can be used to make additional background space 
visible (Figure 5c and d). Frequently used areas are deter-
mined automatically based on click data, frequently chang-

                                                           
1 The palette can also be thought of as a relief palette with the 

photograph pressed onto it. This underlines that when blending 
windows, the notion of Z-order as a means for defining an oc-
clusion order goes away. Z-order is only needed to decide 
which window receives mouse input, and if only one window 
can receive mouse input, Z-order becomes unimportant. 

ing areas by monitoring the palettes. See [3] for a survey of 
related techniques. 
Step 5: Remapping channels: In most cases, steps 1-4 will 
suffice to produce a satisfactory image; however, some 
situations of high interference require an additional step 
where information from one source is remapped to an al-
ternate channel. Figure 6 shows a worst case scenario—
two pieces of text in bitmap format, both using the same 
font and font size. Both windows need to preserve the same 
features in order to be readable – and given that text con-
tains less redundancy than photographs, both windows are 
more sensitive to mutilation than the image content we 
have looked at so far. When alpha blended, both text seg-
ments become unreadable (Figure 6a). 

a b c
 

Figure 4: (a, b) Over a high-frequency background, 
alpha-blended and embossed palettes become un-
readable. (c) A background blur solves this issue. 

a
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c d
 

Figure 5: (a and b) Borders and unused icons use up 
screen space (c and d): Frequently clicked icons and 
dynamic numeric information are preserved, but 
decoration and constant text labels fade. 

When applying steps 1–4, only blurring actually affects the 
palette. The problem is that both windows use the same 
color channel (luminance) to convey their information. We 
address this by remapping the luminance channel of the 
foreground text to a different color channel, here the red-
green difference (Figure 6). Then we use a blending func-
tion that assembles the final image from the hue of the 
foreground and luminance and saturation from the back-



 

 

ground. The resulting image allows the blurry text to be 
read based on its luminance (hold the figure an arm’s 
length away), while the crisp text can be read based on its 
color (hold the paper close). Note that this is a worst case 
scenario. We created multiblending with graphical material 
in mind; even with the enhancements of multiblending, 
blending text will generally remain undesirable. Nonethe-
less, pre-filtering text segments creates a limited amount of 
readability where alpha blending does not. 

a

b  
Figure 6: (a) Alpha-blending text on text. (b) Blurring 
one text and encoding the other text in hue (hue en-
coding is invisible in b/w hardcopy. Please see the 
ACM digital library for a color version of this figure). 

Summary of the walkthrough 
In this walkthrough, steps 1-3 removed features in order to 
preserve the respective class of features in the other win-
dow from interference. We applied a blur filter to remove 
textural features and we used customized blending function 
to selectively process color channels. In step 4, we ex-
tended the approach by allowing different blending pa-
rameters for individual areas. In step 5, finally, we solved 
collisions in requirements by remapping a channel. As a 
result, each feature class is now used by either palette or 
background. This eliminates visual ambiguity, as each fea-
ture is clearly associated with only one window. 
Figure 7 gives an idea of the applicability of the glass pal-
ette. In this example, we merge two windows that have 
identical features, as the shown overview palette shows the 
same photograph as the background. We decide that the 
overview palette contains less task-relevant information 
than the background photo and thus turn the overview into 
a glass palette. While the outline information in the over-
view  is still sufficient for showing which part of the pho-
tograph is currently visible, this palette avoids the visual 
ambiguity that the alpha palette introduces. 

a b

 
Figure 7: (a) Alpha overview palette. (b) The glass 
overview interferes less with the background.  

Manual palette optimization 
When converting opaque palettes to multiblended palettes, 
the individual weights are best chosen such that the win-
dow with the more prevalent features of that class ‘wins.’ 
These initializations can generally be done automatically; 
and loading a different picture or moving palettes to a dif-
ferent background can even be used to trigger a change in 
the palette’s representation. These initializations may, 
however, need manual correction. For example, removing a 
red-eye effect requires preservation of color, even if the 
rest of the picture has little saturation. Allowing users to 
manually switch between palette representations at runtime 
allows obtaining the best results for the task at hand. 
Also during palette creation, the quality of multiblended 
palettes can be improved by manual input. Figure 8 shows 
an example of manual background removal. Alpha blend-
ing color swatches results in diluted, thus inaccurate colors 
(Figure 8a). The swatches thus need to be rendered as fully 
opaque. Manual cropping of swatches (Figure 8b) allows 
preservation of the colors with minimal occlusion, while 
the decoration of the palette uses the known glass effect.  

a b  
Figure 8: (a) Alpha blending dilutes colors in color 
palette. (b) Glass palette with manually cropped 
swatches (see ACM digital library for color version). 

IMPLEMENTATION 
We implemented an initial Java version of the glass pal-
ettes described above. The program works by rendering an 
opaque version of each palette into an off-screen buffer, 
applying all required filters to that off-screen image, merg-
ing it with a copy of the respective fragment of the screen 
buffers, and then copying the resulting bitmap back onto 
the screen. Since our prototype does not yet use graphical 
acceleration its rendering performance is fairly limited; 
rendering is therefore not done while palettes are moving, 
and there is a noticeable pause after moving a palette be-
fore the multiblending effect appears. However, for sta-
tionary palettes, our experience with this prototype sug-
gests that the technique is viable from an implementation 
standpoint; future versions in native code will easily over-
come the current performance limitations. 

USER STUDIES 
In order to validate the multiblending approach, we con-
ducted two user experiments comparing the glass palette to 
alpha-blended palettes at different levels of opacity. Our 
main hypothesis was that the glass palette would simulta-
neously deliver better recognizability of foreground and 
background than any alpha palette. Each of the two studies 
measured one of these aspects using a distinct task. The 



 

 

palette recognizability task required participants to find and 
click on a series of palette icons. The background recog-
nizability task required participants to match the back-
ground picture to one of several candidates.  
Background recognizability study 
The first study considered the recognizability of back-
grounds that were covered with palettes. 

Methods 
Twenty-four participants were recruited from a local uni-
versity. All had normal or corrected-to-normal visual acuity 
and normal color vision. All had extensive experience 
(more than 10 hours/week) with applications that used pal-
ettes and visual workspaces; 8 participants had experience 
(> 1 hour/month) with an image-processing application. 
The study was conducted on a Pentium4 Windows PC run-
ning a custom-built Java application. The study system was 
displayed on a 21-inch monitor at 1280x1024 resolution. 
The study compared three alpha palette types and a glass 
palette type (types shown in Figure 14). Palette visuals 
were taken from Adobe® Photoshop® [2] and converted 
automatically. Alpha-blended palettes computed pixel col-
ors as a weighted sum of palette and background using 
opacities 10%, 25%, and 50%, as suggested by [8]. Glass 
palettes computed pixel colors using the following four 
steps: emboss (2-pixel height) and desaturate to the palette, 
Gaussian blur (1-pixel radius) to the background under-
neath the palette, and blending (using “linear light”). 
The task asked participants to look at a source image that 
was covered by palettes (Figure 9, top left quadrant), and 
click on the exact match of that image from among a set of 
three candidate images (other three quadrants in Figure 9). 
This simulated the real-world task of image retouching, 
where the user must assess the correctness of the overall 
image after every stroke. In two of the three candidates, 
one image feature (the flowers in the top left of the picture) 
had been altered by changing either its brightness or its 
contrast by 1, 2, or 3 steps in either direction. The modified 
feature was either light (Figure 10) or dark (Figure 11). 
Participants were given four practice trials with each of the 
palettes, and then completed 10 test trials in each condition.  
Most of the palette surface (the background) was light. 
Alpha Palettes thus formed a stronger contrast with the 
dark background features than with the light ones. Since 
alpha blending reduces contrast, we hypothesized that it 
would affect the recognizability of the dark features more. 
Measures in this task included completion time and error 
magnitude—that is, the number of steps difference between 
the two images when an error was made.  
The study used a 4x2 mixed factorial design. The factors 
were palette type (glass palette, alpha-50, alpha-25, alpha-
10) and feature type (light or dark). Palette type was a 
within-participants factor, and feature type was a between-
participants factor. Order and spatial position in the quad-
rants were counter-balanced so that each condition was 
seen equally in each quadrant. The study system collected 
completion time and error data. 

 
Figure 9: Background recognizability task (alpha-50 
condition). A source image with overlaid palettes is 
shown at the top left, and three candidate images—
near copies of the source image—are shown in the 
other three quadrants.  
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Figure 10: The 4 conditions in the background recog-
nizability task: (a), alpha-blended at 10% opacity, 
(b) alpha 25%, (c) alpha 50%, and (d) glass palettes. 
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Figure 11: …same palettes over dark image features 



 

 

Results – background recognizability 
Participants’ accuracy in matching the source image using 
different palette types is shown in Figure 12. Analysis of 
variance (4 (palette) x 2 (feature type) ANOVA) with fea-
ture type being a between subjects factor was used to test 
the effects of the two factors. For errors, there was a sig-
nificant main effect of palette type (F3,66=11.14, p<0.001) 
but not of feature type (F1,22=0.59, p=0.45). Interaction 
between palette style and feature was borderline significant 
(F3,66=2.56, p=0.06). 
We carried out follow-up analyses to compare individual 
conditions. Errors were significantly lower for the glass 
palette than any alpha palette; (glass palette vs. alpha-10 
palette, F1,22=5.26, p<0.05). The only other significant dif-
ference was between alpha-10 and alpha-50 (F1,22= 11.15, 
p<0.005).  
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Figure 12: Mean error amounts for background rec-
ognizability task. Error bars show std error. 

Completion time data was also analyzed using ANOVA, 
but no main effect (F3,66=1.73,p=0.17) or interactions were 
found. On average, each trial took between 40 and 70 sec-
onds. Experience with image-processing applications did 
not have any effect on performance. 
We will now first present the second study, which will al-
low us to discuss the results of both studies in conjunction. 

Palette recognizability study 
The second study investigated the recognizability of the 
images on the palettes themselves. 

Methods 
Twelve participants were recruited in the same way as for 
the first study. The study was conducted on the same appa-
ratus, with a similar Java application. The same four pal-
ettes types were used. 
Participants were presented the apparatus shown in Figure 
13. In each trial, an icon was shown in the middle of the 
screen. The participants’ task was to click on the matching 
icon located in one of the four six-icon palettes on the 
screen as quickly as possible. The task consisted of 24 tri-
als per palette type. Each icon was presented once per con-
dition; the same icons and palettes were used in all condi-
tions. We used the same background image as in the previ-
ous study. As with the previous study, target palettes icons 

were either located over a light or dark background feature, 
for 50% of the trials each. 
Participants were given 12 practice trials when starting a 
different palette type. Since participants thus had a good 
general idea of where each icon was (as would be the case 
for an experienced user of a program like Photoshop), the 
task did not test visual search over a large area, but rather 
assessed localized search, icon recognizability, and target 
acquisition. Measures for this task were task completion 
time and number of incorrect clicks. 
This study used a 4x2 within-participants factorial design 
with the same factors (palette type and background feature 
type) used previously; however, in this study both factors 
were within-subject factors. 

 
Figure 13: Palette recognizability task (alpha 50% 
condition). The next icon to be selected is shown in 
the centre circle. 
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Figure 14: Alpha palettes at (a) 10% (b) 25%, and 
(c) 50%, and (d) glass palette used in user study. 

Results – palette recognizability 
Using a 4x2 ANOVA, the main result was the clear differ-
ence between alpha-10 and the other three palette types. 
There were main effects of both errors (F3,33=9.15, 
p<0.001) and completion time (F3,33=7.56, p<0.005). 
Where the error rate with the other three types was about 
one in 25 trials, the rate for alpha-10 averaged more than 
one in three for light backgrounds, and more than 1.5 per 
trial for dark (see Figure 15). Completion time ranged from 
more than five seconds on average for the alpha-10 condi-
tion, to less than two seconds for all the other palette types. 
Post-hoc analyses confirmed that these differences were 



 

 

significant (p<0.05). The large difference in errors between 
light and dark backgrounds for the alpha-10 palette also 
resulted in significant main effects of background type on 
errors (F1,11=6.32, p<0.05), and on completion time 
(F1,11=8.77, p<0.05). There were also interactions between 
background and palette type (for errors, F3,33=5.25, p<0.01; 
for completion time, F3,33=4.57, p<0.05). 
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Figure 15: Mean targeting errors for palette recog-
nizability task. Error bars show std error. 

Preferences 
Participants in the first study were also shown the targeting 
task at the end of their session, so they could compare the 
conditions both for background and foreground visibility. 
We then asked them which technique they felt best sup-
ported both tasks, considered together. Of the 24 partici-
pants, 20 chose the glass palette and 4 the alpha-25 palette. 

DISCUSSION 
The tradeoff of alpha blended palettes is that increasing 
opacity to perform better on foreground tasks necessarily 
implies worse performance on background tasks. The stud-
ies showed that a multiblended palette is able to offer a 
better tradeoff, and perform well on both tasks. Glass pal-
ettes were at least as good as the best alpha palettes for 
both tasks, and were also significantly better than the best 
overall alpha palette (25% opacity) for certain image types. 
Moreover, the majority of participants preferred the glass 
palettes. 
Although our study tested only a comparably small sample 
of alpha values, it seems unlikely that a different choice of 
alpha values would have lead to a different outcome of the 
experiment: opacities above 50% should perform even 
worse in the background recognizability task that alpha-50; 
opacities below 10% should be even less recognizable in 
the foreground task than alpha-10. 
The better performance of the glass palettes seemed to be 
caused by two main properties of this palette style. First, by 
making most of the palette surface completely transparent 
they provide an unaltered view on larger parts of the back-
ground. This allows users to see and check important im-
age background features, such as color and brightness. 
Second, the emboss effect applied to palettes produces out-
lines with both light and dark components, making edges 
stand out on a variety of background color and brightness. 

CONCLUSIONS 
By eliminating the drawbacks of alpha blending, such as 
visual ambiguity, loss of contrast, and unfaithful reproduc-
tion of colors, multiblending helps optimize the readability 
of palettes and background. For the tasks examined in our 
user study, multiblending maintained recognizability of 
palette and background significantly better than any of the 
tested alpha-blended palettes. On the other hand, mul-
tiblending is computationally more expensive and optimi-
zation of palettes requires a certain understanding of the 
application scenario. 
For future work, we plan to test multiblended palettes in a 
variety of applications scenarios, ranging from games, im-
age editors and CAD systems to instant messengers, audio 
players, and task bars. 
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