

Multiblending: displaying overlapping windows
simultaneously without the drawbacks of alpha blending

Patrick Baudisch
Microsoft Research

One Microsoft Way, Redmond, WA 98052, USA

Carl Gutwin
Computer Science, University of Saskatchewan

57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
carl.gutwin@usask.ca

ABSTRACT
Alpha blending allows the simultaneous display of over-
lapping windows—such as palette windows in visual
workspaces. Although alpha blending has been used in
some applications, such as games, it has not been widely
adopted. One reason for the limited acceptance is that in
many scenarios, alpha blending compromises the readabil-
ity of content. We introduce a new blending mechanism
called multiblending that uses a vector of blending weights,
one for each class of features, rather than a single transpar-
ency value. Multiblending can in most cases be automati-
cally optimized to preserve the most relevant features of
both the palette and the background window. We present
the results of a user study in which multiblended palettes
provided higher recognizability of both the background and
the palette than the best participating version of alpha
blending.
Categories & Subject Descriptors: H5.2 [Information
interfaces and presentation]: User Interfaces. - Graphical
user interfaces.
General Terms: Human Factors, Design.
Keywords: Alpha blending, semitransparency, windows.blutwurst

INTRODUCTION
Overlapping windows and 2½-D interfaces were developed
to let applications use limited screen space multiple times.
However, since overlapping windows occlude each other,
users have to switch back and forth between windows in
order to access the different tools and information. This
switching becomes especially cumbersome when the over-
lapping windows belong to the same application. Many
visual applications make tools and controls available in
permanently visible interface components, such as tool
palettes. Palettes can be positioned on top of the workspace
to allow tools to be closer to the area where the work is
being done. However, this causes the palettes to occlude an
area of the underlying data in the workspace (e.g. Figure
1a). Palettes are a tradeoff of 2½D interfaces, between the
availability of objects in the foreground and background
layers. The more available (i.e. larger or closer) the tools in
a palette, the more difficult it is to see and use the visual
data in the workspace below. In the image processing ap-
plication of Figure 1a, tasks such as selecting a larger ob-

a b
Figure 1: (a) An image processing application with a
selection of frequently used tool palettes. (b) Alpha
blended palettes give a better idea of the periphery,
but color, brightness, and contrast of the semi-
occluded areas are still affected.

ject, checking whether retouched elements still match the
overall lighting situation, or getting an overview of the pic-
ture will require the user to hide palettes before proceeding.
In order to deal with the many palette windows that come
with many professional applications, such as CAD or soft-
ware development environments, users often use additional
screen space such as a second monitor [7]. The drawback
of this solution is that palettes are further away, and acquir-
ing them thus takes more time. Also, adding screen space is
not an option for users on mobile computing devices.
Semitransparent palettes have been proposed and imple-
mented as a solution to the problem of occlusion (e.g. [9]).
Semitransparency, using a technique called alpha blending
[15], allows two windows to be displayed on the same
piece of screen space. Semitransparent palettes show the
contents of both windows, reducing the need for switching
between overlapping windows.
However, semitransparency still seems far from reaching
its potential. While it has been adopted into some gaming
applications such as EverQuest [8], and is available on a
window level in some operating systems (e.g., Linux and
MacOS X), it has not been implemented as part of any
multi-window/multi-palette application even though it
seems to be an obvious answer to an ongoing problem. One
reason for the limited acceptance seems to be that for many
scenarios, alpha blending affects the readability of window
contents too much (Figure 1b).
In this paper, we argue that we can make window blending
applicable to a wider range of applications by extending
alpha blending to selectively preserve image features. The
new technique, called multiblending, blends the individual
color and texture features of palette and window separately,
using a range of image processing techniques. This allows

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.
CHI 2004, April 24–29, 2004, Vienna, Austria.
Copyright 2004 ACM 1-58113-702-8/04/0004...$5.00.

us to assign higher visibility to the features most relevant to
the user’s task at hand. Using multiblending, we can create
blended palettes that better preserve the visibility of both
the background and foreground windows (Figure 2).

Figure 2: This multiblending style (“glass palettes”)
allows higher fidelity in the background image, and
still shows relevant features of the palettes. (More
close-ups: Figure 3, Figure 7, and Figure 8).

In this paper, we introduce multiblending and report on
user studies showing that multiblending improves readabil-
ity compared to alpha blending. First, we review related
work on the problem of window space in 2½D interfaces.

RELATED WORK: OVERLAP IN 2½D INTERFACES
In applications that use palettes and other floating win-
dows, several techniques have been proposed to help man-
age the tradeoff between the visibility of palette and back-
ground. Although some research has been done in tech-
niques for placing palettes into areas that result in the least
amount of conflict [4], the majority of work looks at vari-
ous methods for diminishing palettes in situ.
These techniques reduce either the palette’s size or opacity.
The techniques that reduce palette size either shrink the
entire palette (e.g., expanding targets [11]), eliminate eve-
rything but the palette’s title bar (e.g., window shades [13],
a particular instance of semantic zooming [14]), or hide the
palette altogether (e.g., Adobe® Photoshop® [2]).
The techniques that reduce opacity either remove some
pixels entirely or all pixels by a certain amount. Overlays
make part of the palette’s surface transparent. They have
been used for adding titles to video (i.e. chroma-keying), in
head-up displays to show flight data (e.g. [16]), in games to
show maps and messages (e.g. Diablo II), for workspace
tools such as magic lenses [5], and in workspaces to show
global overviews [6]. Alpha blending [15] also known as
semitransparency) blends palette windows with the back-
ground by computing a weighted sum of pixel colors. This

can be done on a per-pixel basis, as defined by the so-
called alpha map. This allows content from both palette and
background window to remain visible to some degree. Al-
pha blending has been used in a number of scenarios, in-
cluding popup menus [9], tool glasses and magic lenses [5],
and multiple representations of the same image [10]. Sev-
eral operating systems including Linux/KDE and Mac OS
10 also allow for semitransparent windows, and add-ons
for window managers are available that manage the trans-
parency of application windows (e.g., [1]).
Since all diminishing techniques affect the readability of
the palette, they typically provide a ‘restored’ representa-
tion in addition to the diminished version that is easier to
read and manipulate. The individual techniques switch be-
tween representations either manually or automatically.
Manual techniques include double-clicking the diminished
palette [13], selecting a ‘restore’ operation from a menu, or
hitting a keyboard shortcut [2]. The automatic mechanisms
proposed so far are based on the proximity of the mouse
cursor [8]. Moving the mouse cursor towards the palette
restores the palette either gradually or abruptly, as a
threshold distance is passed. All these techniques fully re-
store palettes when the mouse reaches the palette; the
boundaries of the palette in motor space thereby remain
unchanged, aiding acquisition.
Of all the diminishing techniques, alpha blending has been
paid the most attention, and several results have appeared
that consider the usability of semi-transparent tool win-
dows. Harrison and colleagues [9] found that 50% trans-
parent palettes can greatly improve workspace visibility
without degrading icon selection performance. Other stud-
ies have shown that users can perform targeting tasks well
with 25% or even 10% opacity, depending on the complex-
ity of the workspace data [8].
Unlike techniques that reduce the size of the palette, alpha
blending has the benefit that all palette content remains on
the screen—although in diminished form. Alpha-blending
thus potentially allows users to monitor changing palette
content, such as a display of the cursor coordinates or
warning signs. The drawback of alpha blending is that it
causes the contents of palette and background to interfere
with each other. This interference will often make both
palette and background hard to read and makes it hard to
say whether two features belong to the same window. We
will discuss these issues in more detail as we introduce our
proposed blending technique in the following section.

MULTIBLENDING
To address the drawbacks of alpha blending, we have de-
veloped a new technique called multiblending that allows
the use of different blending functions for different visual
features. Multiblending is based on the observation that for
a particular task, users typically need only a subset of the
visual features in the involved windows or palettes. Mul-
tiblending modifies the blending process to enable it to
preserve more of these relevant features—if necessary at
the expense of reducing other, less relevant features. To
explain this, we first describe what we mean by “features.”

Feature selection is based on human vision
Our current approach to multiblending is based on four
classes of features: three color classes and one class of tex-
tural features. We focus on ‘apparent’ features—that is,
those that are particularly easily perceived by humans.
The three classes of color feature used by multiblending are
the ones encoded by the CIE Lab color model [12]. CIE
Lab is a perception-oriented color model that represents
color as luminance, red-green and blue-yellow difference.
We picked this model because it largely matches the color
model the human visual apparatus uses when sending color
information to the brain.
Multiblending uses only a single textural feature class—the
presence of high-frequency data, such as edges or other
areas of high contrast in the image. The human visual appa-
ratus has specialized cells that perceive contrast (e.g. re-
ceptive fields [16]).
When analyzing Figure 1 with respect to colors and high
frequencies, we see that the screen is not as crowded as it
seems. Most parts of the palettes are grayscale, i.e., contain
no red/green and blue/yellow information; the photograph,
on the other hand, contains large areas that contain no visi-
ble edges. It is these “unpopulated” areas that we exploit in
our approach.
The limits of alpha blending
Having defined this set of features, we can now better ex-
press the limitations of alpha blending. In terms of color,
alpha blending computes the output image as a weighted
sum of the two source windows. This makes the red, green,
and blue channel, as well as the channels of the CIE Lab
representation, into weighted sums—each weighted by the
same ratio (the blending parameter alpha of that pixel). In
other words, all color channels get diluted by the respective
contribution of the other window. In terms of texture, alpha
blending is subject to interference effects, since image fre-
quencies in the two images will reinforce each other in
some cases, while they will cancel out in others, depending
on how the two images are aligned. If a feature is sensitive
to that dilution or interference, it disappears. If that feature
would have been relevant to the user’s task, alpha blending
becomes unsuitable.
A further drawback that affects all features is that alpha
blending introduces visual ambiguity. Looking at a blended
image, it is hard to say which layer a specific feature be-
longs to (see, for example, Figure 6a). Also, the relation-
ships between features become obscured: it can be difficult
to determine whether two observed features belong to the
same window and thus are semantically related.

Overcoming those limits with multiblending
In order to prevent relevant features from disappearing,
multiblending assigns each class of features an individual
weight, instead of using the single global weight used by
alpha blending.
Even though theoretically, multiblending allows weights to
range from zero to one, it will often be beneficial to limit
the technique to weights that are either zero or one. In other

words, one of the two windows will give up a feature class
entirely in order to allow the respective feature in the other
window to stand out. A palette window may, for example,
be desaturated in order to not affect color in the back-
ground image. Limiting multiblending to Boolean weights
eliminates visual ambiguity; now each type of feature can
stem from only one of the two windows, and all features of
the same type belong to the same window, which clarifies
their grouping. Interference that is caused by the same fea-
tures stemming from different windows is eliminated.
Converting a regular opaque palette into a multiblending
palette thus mainly requires deciding for each of the four
feature classes which windows to take these features from.
The actual computation is then straightforward. Given that
color is represented using the CIE Lab model, computing
output color only requires picking each channel from either
palette or window and reassembling them. The removal of
texture information is accomplished with filters that blur or
sharpen images. These filters generally do not interact with
the overall color of a window; whenever making one pixel
darker, these filters make some nearby pixel lighter.

MAKING MULTIBLENDED PALETTES
In this section, we detail the steps used to create a type of
multiblended palette introduced earlier as the glass palette,
using Boolean weights for each feature class. These Boo-
lean values are provided by the designer, an effort roughly
equivalent to the input required for alpha blending, where
only a single, but therefore real-valued opacity value needs
to be provided. We will show methods for manual im-
provement in a later section. Note that many of the follow-
ing examples require seeing a color version of this paper.
The scenario for our walkthrough is an image editing/re-
touching session in Adobe Photoshop [2]. The goal of pal-
ette creation is to support this task by showing as much of
the surfaces and color of the photograph. The final result of
this walkthrough is shown in Figure 2.

A walkthrough in five steps
Figure 3 shows a part of the screen that contains several
palettes floating on top of a photograph the user intends to
retouch. By default, the tool palette is opaque and occludes
the photograph (Figure 3a). When the palette is alpha-
blended with the background (Figure 3b), the photograph
shows through, but its contrast and colors are still affected.
Step 1: Desaturating: The Photoshop tool palette contains
no useful color information, so we eliminate it by desatu-
rating (Figure 3c). To fully preserve the color of the photo-
graph (red/green and blue/yellow, but not luminance), we
use a blending function that combines the palette’s lumi-
nance with the red/green and blue/yellow information from
the underlying photograph. Each of the color channels is
taken from only one of the two windows, which prevents
them from getting diluted.
Step 2: Making surfaces transparent: The tool palette
mainly consists of icons, and it is the icon’s contours that
are most important for recognition. The icon’s surfaces, on
the other hand, seem to play a lesser role. We therefore

make the palettes surfaces transparent as shown in Figure
3d. In detail, this is done as follows. First, we apply a high-
pass filter (here an emboss filter) to bring out edges. This
produces a grayscale image with light and dark edges. The
edges can be interpreted as a 3D effect; but most impor-
tantly, the effect makes the edges stand out against light
and dark backgrounds. We then remap that grayscale image
to translucency by using an appropriate blending function
(a so-called “linear light” blending function, for details on
filters and blending functions, see [2]).

a b c d
Figure 3: A tool palette blended using (a) opacity,
(b) alpha blending, (c) luminosity, and (d) emboss.

Step 3: Blurring noisy backgrounds: Noisy backgrounds
interfere with multiblended palettes as much as they do
with alpha-blended palettes (Figure 4a and b), making both
palettes virtually disappear. Multiblending therefore elimi-
nates high frequencies from the background image by ap-
plying a blur filter to the background behind the palette
(Figure 4c). Multiblending uses a smart filter that moves
with the palette, and that blurs only those areas that ex-
ceeds a certain contrast threshold, a concept similar to the
“unsharp mask” filter in [2]. The resulting palette is easy to
read; all high contrast content is clearly on the palette,
while all low contrast content is in the photograph behind
it. The resulting palette seems to be made of a piece of
frosted glass1, a palette style we will refer to as the glass
palette.
Step 4: Area-based opacity based on usage data. In Figure
5a and b, a significant part of the palette consists of win-
dow decoration, unused icons, or labels that never change,
such as “R”, “G”, and “B”. Once users have learned such
static palette elements, they offer little information to the
user. While varying opacity across alpha palettes leads to a
noisy appearance, diminishing parts of glass palettes works
well and can be used to make additional background space
visible (Figure 5c and d). Frequently used areas are deter-
mined automatically based on click data, frequently chang-

1 The palette can also be thought of as a relief palette with the

photograph pressed onto it. This underlines that when blending
windows, the notion of Z-order as a means for defining an oc-
clusion order goes away. Z-order is only needed to decide
which window receives mouse input, and if only one window
can receive mouse input, Z-order becomes unimportant.

ing areas by monitoring the palettes. See [3] for a survey of
related techniques.
Step 5: Remapping channels: In most cases, steps 1-4 will
suffice to produce a satisfactory image; however, some
situations of high interference require an additional step
where information from one source is remapped to an al-
ternate channel. Figure 6 shows a worst case scenario—
two pieces of text in bitmap format, both using the same
font and font size. Both windows need to preserve the same
features in order to be readable – and given that text con-
tains less redundancy than photographs, both windows are
more sensitive to mutilation than the image content we
have looked at so far. When alpha blended, both text seg-
ments become unreadable (Figure 6a).

a b c

Figure 4: (a, b) Over a high-frequency background,
alpha-blended and embossed palettes become un-
readable. (c) A background blur solves this issue.

a

b

c d

Figure 5: (a and b) Borders and unused icons use up
screen space (c and d): Frequently clicked icons and
dynamic numeric information are preserved, but
decoration and constant text labels fade.

When applying steps 1–4, only blurring actually affects the
palette. The problem is that both windows use the same
color channel (luminance) to convey their information. We
address this by remapping the luminance channel of the
foreground text to a different color channel, here the red-
green difference (Figure 6). Then we use a blending func-
tion that assembles the final image from the hue of the
foreground and luminance and saturation from the back-

ground. The resulting image allows the blurry text to be
read based on its luminance (hold the figure an arm’s
length away), while the crisp text can be read based on its
color (hold the paper close). Note that this is a worst case
scenario. We created multiblending with graphical material
in mind; even with the enhancements of multiblending,
blending text will generally remain undesirable. Nonethe-
less, pre-filtering text segments creates a limited amount of
readability where alpha blending does not.

a

b
Figure 6: (a) Alpha-blending text on text. (b) Blurring
one text and encoding the other text in hue (hue en-
coding is invisible in b/w hardcopy. Please see the
ACM digital library for a color version of this figure).

Summary of the walkthrough
In this walkthrough, steps 1-3 removed features in order to
preserve the respective class of features in the other win-
dow from interference. We applied a blur filter to remove
textural features and we used customized blending function
to selectively process color channels. In step 4, we ex-
tended the approach by allowing different blending pa-
rameters for individual areas. In step 5, finally, we solved
collisions in requirements by remapping a channel. As a
result, each feature class is now used by either palette or
background. This eliminates visual ambiguity, as each fea-
ture is clearly associated with only one window.
Figure 7 gives an idea of the applicability of the glass pal-
ette. In this example, we merge two windows that have
identical features, as the shown overview palette shows the
same photograph as the background. We decide that the
overview palette contains less task-relevant information
than the background photo and thus turn the overview into
a glass palette. While the outline information in the over-
view is still sufficient for showing which part of the pho-
tograph is currently visible, this palette avoids the visual
ambiguity that the alpha palette introduces.

a b

Figure 7: (a) Alpha overview palette. (b) The glass
overview interferes less with the background.

Manual palette optimization
When converting opaque palettes to multiblended palettes,
the individual weights are best chosen such that the win-
dow with the more prevalent features of that class ‘wins.’
These initializations can generally be done automatically;
and loading a different picture or moving palettes to a dif-
ferent background can even be used to trigger a change in
the palette’s representation. These initializations may,
however, need manual correction. For example, removing a
red-eye effect requires preservation of color, even if the
rest of the picture has little saturation. Allowing users to
manually switch between palette representations at runtime
allows obtaining the best results for the task at hand.
Also during palette creation, the quality of multiblended
palettes can be improved by manual input. Figure 8 shows
an example of manual background removal. Alpha blend-
ing color swatches results in diluted, thus inaccurate colors
(Figure 8a). The swatches thus need to be rendered as fully
opaque. Manual cropping of swatches (Figure 8b) allows
preservation of the colors with minimal occlusion, while
the decoration of the palette uses the known glass effect.

a b
Figure 8: (a) Alpha blending dilutes colors in color
palette. (b) Glass palette with manually cropped
swatches (see ACM digital library for color version).

IMPLEMENTATION
We implemented an initial Java version of the glass pal-
ettes described above. The program works by rendering an
opaque version of each palette into an off-screen buffer,
applying all required filters to that off-screen image, merg-
ing it with a copy of the respective fragment of the screen
buffers, and then copying the resulting bitmap back onto
the screen. Since our prototype does not yet use graphical
acceleration its rendering performance is fairly limited;
rendering is therefore not done while palettes are moving,
and there is a noticeable pause after moving a palette be-
fore the multiblending effect appears. However, for sta-
tionary palettes, our experience with this prototype sug-
gests that the technique is viable from an implementation
standpoint; future versions in native code will easily over-
come the current performance limitations.

USER STUDIES
In order to validate the multiblending approach, we con-
ducted two user experiments comparing the glass palette to
alpha-blended palettes at different levels of opacity. Our
main hypothesis was that the glass palette would simulta-
neously deliver better recognizability of foreground and
background than any alpha palette. Each of the two studies
measured one of these aspects using a distinct task. The

palette recognizability task required participants to find and
click on a series of palette icons. The background recog-
nizability task required participants to match the back-
ground picture to one of several candidates.
Background recognizability study
The first study considered the recognizability of back-
grounds that were covered with palettes.

Methods
Twenty-four participants were recruited from a local uni-
versity. All had normal or corrected-to-normal visual acuity
and normal color vision. All had extensive experience
(more than 10 hours/week) with applications that used pal-
ettes and visual workspaces; 8 participants had experience
(> 1 hour/month) with an image-processing application.
The study was conducted on a Pentium4 Windows PC run-
ning a custom-built Java application. The study system was
displayed on a 21-inch monitor at 1280x1024 resolution.
The study compared three alpha palette types and a glass
palette type (types shown in Figure 14). Palette visuals
were taken from Adobe® Photoshop® [2] and converted
automatically. Alpha-blended palettes computed pixel col-
ors as a weighted sum of palette and background using
opacities 10%, 25%, and 50%, as suggested by [8]. Glass
palettes computed pixel colors using the following four
steps: emboss (2-pixel height) and desaturate to the palette,
Gaussian blur (1-pixel radius) to the background under-
neath the palette, and blending (using “linear light”).
The task asked participants to look at a source image that
was covered by palettes (Figure 9, top left quadrant), and
click on the exact match of that image from among a set of
three candidate images (other three quadrants in Figure 9).
This simulated the real-world task of image retouching,
where the user must assess the correctness of the overall
image after every stroke. In two of the three candidates,
one image feature (the flowers in the top left of the picture)
had been altered by changing either its brightness or its
contrast by 1, 2, or 3 steps in either direction. The modified
feature was either light (Figure 10) or dark (Figure 11).
Participants were given four practice trials with each of the
palettes, and then completed 10 test trials in each condition.
Most of the palette surface (the background) was light.
Alpha Palettes thus formed a stronger contrast with the
dark background features than with the light ones. Since
alpha blending reduces contrast, we hypothesized that it
would affect the recognizability of the dark features more.
Measures in this task included completion time and error
magnitude—that is, the number of steps difference between
the two images when an error was made.
The study used a 4x2 mixed factorial design. The factors
were palette type (glass palette, alpha-50, alpha-25, alpha-
10) and feature type (light or dark). Palette type was a
within-participants factor, and feature type was a between-
participants factor. Order and spatial position in the quad-
rants were counter-balanced so that each condition was
seen equally in each quadrant. The study system collected
completion time and error data.

Figure 9: Background recognizability task (alpha-50
condition). A source image with overlaid palettes is
shown at the top left, and three candidate images—
near copies of the source image—are shown in the
other three quadrants.

a

c

b

d

Figure 10: The 4 conditions in the background recog-
nizability task: (a), alpha-blended at 10% opacity,
(b) alpha 25%, (c) alpha 50%, and (d) glass palettes.

a

c

b

d

Figure 11: …same palettes over dark image features

Results – background recognizability
Participants’ accuracy in matching the source image using
different palette types is shown in Figure 12. Analysis of
variance (4 (palette) x 2 (feature type) ANOVA) with fea-
ture type being a between subjects factor was used to test
the effects of the two factors. For errors, there was a sig-
nificant main effect of palette type (F3,66=11.14, p<0.001)
but not of feature type (F1,22=0.59, p=0.45). Interaction
between palette style and feature was borderline significant
(F3,66=2.56, p=0.06).
We carried out follow-up analyses to compare individual
conditions. Errors were significantly lower for the glass
palette than any alpha palette; (glass palette vs. alpha-10
palette, F1,22=5.26, p<0.05). The only other significant dif-
ference was between alpha-10 and alpha-50 (F1,22= 11.15,
p<0.005).

0.23

0.33

0.42

0.25

0.34

0.45 0.46

0.15

0.0

0.1

0.2

0.3

0.4

0.5

0.6

alpha-10 alpha-25 alpha-50 glass

er
ro

r a
m

ou
nt

 (s
te

ps
)

light features
dark features
light features
dark features

Figure 12: Mean error amounts for background rec-
ognizability task. Error bars show std error.

Completion time data was also analyzed using ANOVA,
but no main effect (F3,66=1.73,p=0.17) or interactions were
found. On average, each trial took between 40 and 70 sec-
onds. Experience with image-processing applications did
not have any effect on performance.
We will now first present the second study, which will al-
low us to discuss the results of both studies in conjunction.

Palette recognizability study
The second study investigated the recognizability of the
images on the palettes themselves.

Methods
Twelve participants were recruited in the same way as for
the first study. The study was conducted on the same appa-
ratus, with a similar Java application. The same four pal-
ettes types were used.
Participants were presented the apparatus shown in Figure
13. In each trial, an icon was shown in the middle of the
screen. The participants’ task was to click on the matching
icon located in one of the four six-icon palettes on the
screen as quickly as possible. The task consisted of 24 tri-
als per palette type. Each icon was presented once per con-
dition; the same icons and palettes were used in all condi-
tions. We used the same background image as in the previ-
ous study. As with the previous study, target palettes icons

were either located over a light or dark background feature,
for 50% of the trials each.
Participants were given 12 practice trials when starting a
different palette type. Since participants thus had a good
general idea of where each icon was (as would be the case
for an experienced user of a program like Photoshop), the
task did not test visual search over a large area, but rather
assessed localized search, icon recognizability, and target
acquisition. Measures for this task were task completion
time and number of incorrect clicks.
This study used a 4x2 within-participants factorial design
with the same factors (palette type and background feature
type) used previously; however, in this study both factors
were within-subject factors.

Figure 13: Palette recognizability task (alpha 50%
condition). The next icon to be selected is shown in
the centre circle.

a cb d

Figure 14: Alpha palettes at (a) 10% (b) 25%, and
(c) 50%, and (d) glass palette used in user study.

Results – palette recognizability
Using a 4x2 ANOVA, the main result was the clear differ-
ence between alpha-10 and the other three palette types.
There were main effects of both errors (F3,33=9.15,
p<0.001) and completion time (F3,33=7.56, p<0.005).
Where the error rate with the other three types was about
one in 25 trials, the rate for alpha-10 averaged more than
one in three for light backgrounds, and more than 1.5 per
trial for dark (see Figure 15). Completion time ranged from
more than five seconds on average for the alpha-10 condi-
tion, to less than two seconds for all the other palette types.
Post-hoc analyses confirmed that these differences were

significant (p<0.05). The large difference in errors between
light and dark backgrounds for the alpha-10 palette also
resulted in significant main effects of background type on
errors (F1,11=6.32, p<0.05), and on completion time
(F1,11=8.77, p<0.05). There were also interactions between
background and palette type (for errors, F3,33=5.25, p<0.01;
for completion time, F3,33=4.57, p<0.05).

0.38

0.02 0.01 0.01

1.58

0.05 0.02 0.06

0.0

0.5

1.0

1.5

2.0

2.5

alpha-10 alpha-25 alpha-50 glass

er
ro

rs
 p

er
 tr

ia
l

over light background
over dark background
over light background
over dark background

Figure 15: Mean targeting errors for palette recog-
nizability task. Error bars show std error.

Preferences
Participants in the first study were also shown the targeting
task at the end of their session, so they could compare the
conditions both for background and foreground visibility.
We then asked them which technique they felt best sup-
ported both tasks, considered together. Of the 24 partici-
pants, 20 chose the glass palette and 4 the alpha-25 palette.

DISCUSSION
The tradeoff of alpha blended palettes is that increasing
opacity to perform better on foreground tasks necessarily
implies worse performance on background tasks. The stud-
ies showed that a multiblended palette is able to offer a
better tradeoff, and perform well on both tasks. Glass pal-
ettes were at least as good as the best alpha palettes for
both tasks, and were also significantly better than the best
overall alpha palette (25% opacity) for certain image types.
Moreover, the majority of participants preferred the glass
palettes.
Although our study tested only a comparably small sample
of alpha values, it seems unlikely that a different choice of
alpha values would have lead to a different outcome of the
experiment: opacities above 50% should perform even
worse in the background recognizability task that alpha-50;
opacities below 10% should be even less recognizable in
the foreground task than alpha-10.
The better performance of the glass palettes seemed to be
caused by two main properties of this palette style. First, by
making most of the palette surface completely transparent
they provide an unaltered view on larger parts of the back-
ground. This allows users to see and check important im-
age background features, such as color and brightness.
Second, the emboss effect applied to palettes produces out-
lines with both light and dark components, making edges
stand out on a variety of background color and brightness.

CONCLUSIONS
By eliminating the drawbacks of alpha blending, such as
visual ambiguity, loss of contrast, and unfaithful reproduc-
tion of colors, multiblending helps optimize the readability
of palettes and background. For the tasks examined in our
user study, multiblending maintained recognizability of
palette and background significantly better than any of the
tested alpha-blended palettes. On the other hand, mul-
tiblending is computationally more expensive and optimi-
zation of palettes requires a certain understanding of the
application scenario.
For future work, we plan to test multiblended palettes in a
variety of applications scenarios, ranging from games, im-
age editors and CAD systems to instant messengers, audio
players, and task bars.

Acknowledgements
Thanks to Christopher James Fedak for his work on the
implementation and to Mary Czerwinski, Andy Wilson,
Steven Drucker, and Ed Cutrell for their comments.

REFERENCES
1. ActualTools Corporation, Actual Transparent Windows

Software, www.actualtools.com/transparentwindows
2. Adobe Photoshop www.adobe.com/products/photoshop
3. Baudisch, P., DeCarlo, D., Duchowski, A., and Geisler, B.

Focusing on the Essential: Considering Attention in Dis-
play Design. CACM 46(3), pp. 60–66.

4. Bell, B. Feiner, S., Höllerer, T. View management for vir-
tual and augmented reality. In Proc. UIST’01, pp. 101–110.

5. Bier, E., Stone, M., Pier, K., Buxton, W., and De Rose, T.
Toolglasses and Magic Lenses: the See-Through Interface.
In Proc. SIGGRAPH ‘93, 73–80.

6. Cox, D., Chugh, J.S., Gutwin, C. and Greenberg, S. The
Usability of Transparent Overview Layers. In CHI’98
Companion, 301–302.

7. Grudin, J. Partitioning digital worlds: focal and peripheral
awareness in multiple monitor use. In Proc. CHI’01,
pp. 458–465.

8. Gutwin, C., Dyck, J., and Fedak, C. The Effects of Dy-
namic Transparency on Targeting Performance, In Proc.
Graphics Interface 2003, 101–110.

9. Harrison, B.L., Kurtenbach, G., and Vicente, K.J. An Ex-
perimental Evaluation of Transparent User Interface Tools
and Information Content. In Proc. UIST ‘95, 81–90.

10. Lieberman, H. Powers of ten thousand: Navigating in large
information spaces. In Proc. UIST'94, 15–16.

11. McGuffin, M., Balakrishnan, R. Acquisition of expanding
targets. In Proc. CHI 2002, 57–64.

12. McLaren, K. The development of the CIE 1976 (L*a*b*)
uniform colour-space and colour-difference formula, Jour-
nal of the Society of Dyers and Colourists, 92, 1976,
pp. 38–341.

13. Palma, W. WinRoll, www.palma.com.au/winroll
14. Perlin, K. and Fox, D. Pad: An alternative approach to the

computer interface. Proc. SIGGRAPH’93, 57–64.
15. Porter, T. and Duff, T. Compositing Digital Images, Com-

puter Graphics 18, 3, July 1984, pp. 253–259.
16. Wandell, B. Foundations of Vision. Sinauer Assoc, 1995.
17. Wickens, C. Engineering Psychology and Human Per-

formance, Harper Collins, 1992.

