
1 

Joining Collaborative and Content-based Filtering  
 

Patrick Baudisch 
Integrated Publication and Information Systems Institute IPSI 

German National Research Center for Information Technology GMD 
64293 Darmstadt, Germany 

+49-6151-869-854 
baudisch@gmd.de

ABSTRACT 
Different authors have proposed combining content-based 
and collaborative attributes in a single table. In this arti-
cle, we try out a different approach. We propose not to 
merge the two tables, but to join them as if they were ta-
bles in a relational database. As a result, we get several 
new application cases and a system architecture that sup-
ports the formulation of universal queries. 

Keywords 
Recommender system, collaborative filtering, content-
based enhancements, relational database, join, SQL, user 
interface 

RELATED WORK 
During the past year, a number of authors and system 
designers have experimented with enhancing collabora-
tive systems (also called recommender systems) with con-
tent-based extensions [1, 2]. While purely collaborative 
systems are based on a single user × object table, en-
hanced systems introduce formal descriptors into the sys-
tem. These enhancements are based on the observation 
that the content-based relation matches(descriptor, object) 
is compatible with the collaborative relation likes(user, 
object). Consequently, both relations can be stored in a 
single table as shown in Table 1. Content-based attributes 
are added as additional rows into the table, so that users 
and content-based descriptors are actually mixed. In other 
words, content-based descriptors are treated as additional 
users.  

 Object1 Object2 Λ 
User1 RU11 RU12 Λ 
User2 RU21 RU22 Λ 
Μ Μ Μ Ο 
Descriptor1 RD11 RD12 Λ 
Descriptor2 RD21 RD22 Λ 
Μ Μ Μ Ο 

Table 1: Introducing formal descriptors into col-
laborative systems 

Which kinds of content-based descriptors are actually 
used depends on the application domain. The GroupLens 
Filterbots [1] help to filter newsgroup articles. Experi-
ments have shown, for example, that the formal descriptor 
“high amount of cited text” is a good predictor for poor 

ratings in the alt.rec.humor newsgroup. Other Filterbots 
count the number of typographical errors or simply meas-
ure message lengths. 
Greening [2] uses so-called Archetypes in his recom-
mender system for music, videos, and books. Archetypes 
implement the same concept as Filterbots, i.e. they are 
“hypothetical users” that “like“ all objects having a spe-
cific property. In this application domain, properties are 
product categories, artists, and listening types. 
The primary purpose of Filterbots and Archetypes is to 
help overcome the so-called first-rater problem. First-
rater problem means that objects newly introduced into 
the system have not been rated by any users and can 
therefore not be recommended. Due to the absence of 
recommendations, users tend to not be interested in re-
garding these new objects. This in turn has the conse-
quence that the newly added objects remain in their state 
of not being recommendable. Whereas real users are af-
fected by the first-rater problem, Filterbots and Arche-
types are always “motivated” to rate new objects, i.e. to 
be early raters. The Filterbots/Archetypes approach is 
therefore a promising approach to solving the first-rater 
problem. 

A DIFFERENT APPROACH 
In this article, we will try out a different way of introduc-
ing content-based descriptors into collaborative systems. 
Similar to the systems described above, we will combine 
the two tables containing users and formal descriptors. 
However, we will not do this by merging the two tables 
but instead by joining them. We mean joining in the sense 
used in relational databases.  
The purpose of joining tables is only indirectly related to 
the first-rater problem. It is a way of integrating collabo-
rative systems with content-based information systems 
and of generating new functionality, which is then di-
rectly available to users. 

Some remarks on notation 
When discussing individual concepts, we will look at 
them on a rather high level. Although implementation and 
performance “tricks” are an important issue, especially in 
large-scale recommender systems (and recommender sys-
tems have to be large scale to work effectively), we will 
look at the involved data structures as simple relations. To 
implement the described concepts, however, it will be 



2 

necessary and crucial to consider an efficient implementa-
tion. 
In general, we will borrow a number of notations from 
database systems, i.e. SQL-like syntax and entity relation-
ship diagrams. We are aware of the fact that the actual 
calculations done in information retrieval/information 
filtering and in collaborative systems are more compli-
cated then the ones suggested by the diagrams. When 
reading these notations, be aware that the calculations 
behind these notations are different from processing SQL-
joins on tables. 
Finally, a remark on terminology. In information retrieval 
literature, the objects retrieved from information systems 
are usually referred to as documents. However, one has to 
admit that these documents can be as well multimedia 
objects, hypertext and so on. In this article, we will be 
generally speaking of objects unless we explicitly de-
scribe them as text documents. 
Before actually joining tables, we will start by looking at 
the two tables individually. 

Content-based processing 
Information retrieval and information filtering systems 
perform all calculations on the single relation descriptor × 
object. As an example, objects can be text documents and 
descriptors can be keywords. Figure 1 shows the two in-
volved entities and the single relation between them.  

objectobjectdescriptordescriptor matchesmatches
 

Figure 1: Entity relationship model of content-
based information retrieval and filtering 

By using this relation in the one or the other direction and 
by joining it with itself, the four relations shown in 
Table 2 can be computed. The table contains the names of 
typical applications based on the individual cases. 

Descriptors 
(e.g. Key-
words) 

Associative 
thesaurus 

Information 
retrieval/ 
filtering 

Object Indexing Query by 
example 

 Descriptors 
(e.g. Key-

words) 

Object 

Table 2: Applications of content-based systems. 
Table rows are input; table columns are output. 

The primary goal of information systems is to retrieve or 
filter objects. Therefore, the right column of Table 2 is 
usually in the focus of interest. The two table cells in the 
left column, i.e. thesauri and indexing, provide necessary 
or helpful methods for enhancing search. 

When retrieving objects, queries can be made up either of 
formal descriptors or of objects. In the latter case, the 
entered documents are considered as (usually positive) 
examples and when queried, the system returns a set of 
similar objects (query by example). Since entering objects 
or object references manually has proved to be difficult, 
object-based queries are usually handled as an extension 
of the keyword-based retrieval case. Users first have to 
query the system using a keyword-based query. Then 
users pick positive or negative examples from the re-
turned set of objects to refine the query (relevance feed-
back). This approach is a union of the two right cells in 
Table 2. To combine the two input data types keywords 
and documents in a single query, documents are replaced 
with the most expressive keywords used in these docu-
ments. 

Collaborative processing 
In collaborative systems, all calculations are based on the 
single relation user × object. Figure 2 shows the two in-
volved entities and the single relation between them.  

objectobjectuseruser likeslikes
 

Figure 2: Entity relationship model of collaborative 
systems 

Analogous to the content-based cases described above, 
this relation can be used to address the four different sce-
narios shown in Table 3. 

User Matchmaker Active col-
laborative 
filtering 

Object Find experts  Automated 
collaborative 

filtering 

 User Object 

Table 3: Applications of a collaborative system 

Those cases that retrieve objects form the right column. 
The two fields represent two well-known versions of col-
laborative filtering. In passive or automated collaborative 
filtering (e.g. [4]), users fill their user profiles with ratings 
about objects, and then solely this profile is used to query 
the system. In the case of active collaborative filtering 
(e.g. [5]), users are addressed individually, either for 
sending them recommendations or for gathering recom-
mendations from them. 
The two fields in the left column return users instead of 
objects. They can therefore be interesting for their social 
aspects. A typical application is matchmaking. 

Comparison 
There are some basic differences between collaborative 
and content-based approaches. Users do know and under-



3 

stand the meaning of keywords and other formal descrip-
tors, while they do not necessarily know the meaning of 
collaborative descriptors (i.e. users and the interests they 
represent). Consequently, keywords can always be used 
to explain the objects they match. Names of users can 
only be used to describe the objects these users like if the 
respective users are known. This is usually the case if the 
community of users is very small or if the respective users 
are known for other reasons, e.g. because they are opinion 
leaders [3]. This restricts the applicability of (active) col-
laborative filtering. 

JOINING THE TWO RELATIONS 
If we provide a system with both content-based and col-
laborative information as separate relations, we get the 
entity-relationship model shown in Figure 3. 

descriptordescriptor matchesmatches

objectobject

useruser likeslikes
 

Figure 3: Entity-relationship model of combined 
system 

Exploiting all possible joins of Figure 3 provides the 
functionality of a content-based system, as well as the 
functionality of a collaborative system as shown in 
Table 4. The thick lines show how uniting Table 2 and a 
180°-rotated Table 3 generated this table.  
There are new aspects about Table 4, compared to the two 
original tables forming it. Two new cells have been cre-
ated. The user descriptor cell turns user profiles into 
sets of formal descriptors. This function can be used to 
convert collaborative user profiles into textual descrip-
tions. The opposite case, i.e. turning keywords into users, 
can be used to rapidly generate user profiles from formal 
descriptions or to find experts to a given topic. 

Descriptor 
(e.g. Key-
word) 

Thesaurus Information 
Retrieval/ 
Filtering 

Profile 
import, find 

experts 

Query by 
example 

Object Indexing 
 
  Automated 

collaborative 
filtering Find experts

User 
Profile 
export 

Active col-
laborative 
filtering 

Match 
Maker 

 Descriptor 
(e.g. Key-

word) 

Object User 

Table 4: Possible queries in a combined system. 

The fact that both sub-tables overlap at the center cell is 
not surprising. In the introduction, we already mentioned 
systems that make use of this fact by merging users and 
formal descriptors in a single table. In a combined system, 
there are actually three possibilities to infer object-object 
relationships. It can be done via descriptors (content-
based), via users (collaborative), or both (e.g. using Fil-
terbots).  

USAGE SCENARIOS 
Should we build a combined system and if so, which 
kind? Which user group would probably be interested in 
which functionality? We will look at some possible appli-
cation scenarios. Icons on the left illustrate which cells of 
Table 4 are currently referred to. 

Users of the actual recommender functionality are 
interested in retrieving objects. The retrieval proc-
ess can be fed with content-based descriptors, a 
selection of relevant objects, a list of users known 
to have similar taste, as well as with a combination 
of all of these.  
Marketing people are interested in obtaining infor-
mation about users. They can query the system us-
ing keywords, objects (e.g. products), as well as 
with dummy users containing prototypical market-
ing-profiles. 
As a special case of marketing, users might be in-
terested in marketing themselves. Matchmaking has 
proven to be of interest in a number of web ser-
vices, such as the Friendfinder 
(www.friendfinder.com), chat forums etc. Users 
can be retrieved as described in the marketing ap-
proaches above (describing the desired profile) or 
using their own user profile (seeking for users with 
similar interests). The same functions can be used 
to find experts to a given topic. 

 
Within the system, objects and users are actually 
references to objects and users. Since these are only 
valid within the context of the system, they have to 
be translated into a textual description before they 
can be exported to another system using different 
references. Functions returning keywords and other 
formal descriptors allow such a translation. This 
way, object descriptions and user profiles can be 
transferred, e.g. to the query form of a WWW 
search engine, to search for additional information. 
As one special case, users can export their own user 
profile this way, e.g. to import it into another re-
commender system. 
The corresponding functions allow importing the 
type of object and profile description generated by 
the export functions. 
Cells returning the same type of data that was fed 
into them are useful for supporting browsing tasks. 
There are three possible thesauri to browse: a key-
word thesaurus, an object thesaurus, and a user the-



4 

saurus (left top to right bottom). Appropriate simi-
larity measures have to be found here. 

Table 5 summarizes some of the scenarios listed above by 
grouping cells according to the input data type. The cen-
ter column is of special importance to the system. It is 
necessary to allow users to provide ratings and thereby to 
keep the collaborative part of the system running. 

Descriptor 

Object 

User 

Actual users 
 exchanging 

data and 
browsing 

Actual users 
seeking rec-
ommenda-

tion 

Marketing 
people seek-
ing specific 
groups of 

users 
& Users 

interested in  
Matchmak-

ing 

 
Descriptor  Object User 

Table 5: Summary: Which user group is interested 
in which functionality? 

COMPUTATIONS 
When executing queries, all computation is done based on 
the two relations “likes” and “matches” from Figure 3. 
Table 6 shows how the individual cases can be computed. 
For the sake of simplicity, we used the following func-
tional notation: d stands for a formal descriptor, o for an 
object, u for a user. L(), LT(), M(), MT(), LM() and LMT() 
stand for an application of the likes-, the matches-, or the 
combined (“Filterbots”) relation respectively, in the one 
or the other direction (likes, is liked, ...). 

Descriptor MT(M(d)) M(d) LT(M(d)) 

M(MT(o)) 

LM(LMT(o)) Object MT(o) 

L(LT(o)) 

LT(o) 

User MT(L(u)) L(u) LT(L(u)) 

 Descriptor Object User 

Table 6: Computation of the individual queries 

Extension: user-defined computation 
We just covered queries such as “Give me all movies that 
Andrea likes”. Answering that query would return the 
rather short list of positively rated objects from Andrea’s 
user profile. However, we can also ask, “Give me all 
movies that users similar to Andrea like”. Since we now 
include recommendations from many more users, this 
would result in a much longer list. In a similar fashion we 
could ask, “Give me all movies that people similar to 
those users that are similar to Andrea like”, and so on. 
Such query terms can be implemented by inserting 
RT(R()) and R(RT()) pairs into the queries in Table 6, with 

R() being any of the relations L(), M(), and LM(). The 
query “Give me all movies that Andrea likes” L(Andrea) 
can be turned into “Give me all movies that users similar 
to Andrea like” by inserting LT(L()), MT(M()), or 
LMT(LM()) leading to L(LT(L(Andrea))) etc. There are 
three possibilities, because the “users similar to” operator 
can be executed in a content-based, collaborative, or com-
bined way. Query by example, for example, can be im-
plemented as M(MT(M(d))). 

QUERY FORMULATION AND USER INTERFACES 
When a system accepts two or more parameter types to 
formulate queries (i.e. the system implements two or more 
cells of a column from Table 4), then users should be 
allowed to combine these input parameters in a single 
query. An example for a successful implementation of 
this concept is relevance feedback. Consequently, the 
goal for implementing the center column of the above 
table is to implement a system that allows combining ob-
jects, formal descriptors, and users in a single query. 
One possibility would be to combine two or more terms 
using the Boolean operators AND, OR, and NOT. An 
example from the movie domain could be “Give me all 
movies that user Lars likes and that have descriptions 
containing the words ‘car’ or ‘race’ which could be en-
tered as “userLars AND (car OR race)”. 

Entering parameters 
Entering formal descriptors is generally uncritical, e.g. 
using a text-based interface. The keywords stored in the 
inverted files of the retrieval system are so simple that 
they can be identified uniquely from what user types. Ob-
ject and user parameters are more difficult to enter. Iden-
tifying a user or a document from typed text is not always 
unambiguous. These entities could be identified using 
their internal references, but users might not know them 
or misspell them. As already mentioned in the case of 
relevance feedback, an appropriate solution is the follow-
ing. Users describe the desired entities using formal de-
scriptors. If the query returns a single entity only, this 
entity is selected automatically. If the query returns a 
number of entities, a selection dialog is started to select 
among them. 
If input parameters of different types can be mixed, ambi-
guities about their type may occur. In a movie recom-
mendation system, “Terminator” might be a search term, 
a movie, or the nickname of a user. If users enter queries 
via a textual interface it can therefore be necessary to re-
solve ambiguities by annotating parameters with their 
type. 
If a system allows the retrieval of different types of enti-
ties using the same user interface (e.g. either objects or 
users), users have to select what kind of entity they want 
to retrieve, e.g. using a simple menu. 

User interfaces for user-defined computation 
When we permit users to apply extra relation pairs, as 
described above, the retrieval-like syntax just described 



5 

becomes insufficient. Users do not only have to provide 
parameters and combine them with Boolean operators; 
they also have to guide the computation, i.e. the applica-
tion of relations. One possible syntax is the functional 
syntax used above, such as “L(LT(L(Andrea))”. Another 
possibility is an SQL-like syntax [6], using a simplified 
select-statement. The rather cryptical type of syntax is of 
course not desirable, especially when dealing with casual 
users. However, a number of graphical visualizations 
have been created to bring light into SQL syntax.  
Figure 4 shows a screenshot of one of our experimental 
prototypes in the domain of movie recommendation. The 
query shown returns a list of keywords, describing boxing 
movies similar to “Rocky2” (i.e. MT(M(“boxing”) AND 
LMT(LM(“Rocky 2”)))). The square pieces on the left are 
used to enter parameters. Domino pieces and set opera-
tions (e.g. “AND”) are appended to the right to direct 
computation. The T-icon symbolizes a keyword, the head 
icon a user, and the video-tape icon a movie. The double-
size domino piece represents the LM(LMT()) relation.  

 
Figure 4: Prototypical user interface for entering 
queries of SQL-like syntax. 

FUTURE WORK 
We currently work on implementing the described tech-
niques as part of our TV recommendation system 
TV Scout (http://www.tvscout.tvtoday.de). We experi-
ment with different software platforms promising fast 
computation, as well as with user interfaces. 
In this article, we assumed the existence of two explicitly 
represented relations likes() and matches() and experi-
mented with a number of ways to apply them. Other sys-
tems provide different or more relations. Users might be 
allowed to store a hand-selected neighborhood of mentors 
in their user profiles (user x user), a set of keywords de-
scribing their favorite objects (user x keywords), or a set 
of favorite queries (user x query). Similar to the way we 
joined relations in this article, all of these relations could 
be joined and matched with each other, generating new 
functionality.  

CONCLUSIONS 
Mixing content-based and collaborative techniques was 
originally done to overcome the first-rater problem. How-
ever, a number of new possibilities can be derived from 
this basic idea, waiting to be exploited. This article is a 
first exploration of the possibilities. Next steps will be 
actual implementations and formal evaluations. 

REFERENCES 
1. Konstan, Joseph. A., Riedl, John, Borchers, Al and 

Herlocker, Jonathan L. Recommender Systems: A 
GroupLens Perspective. Recommender Systems. Pa-
pers from the 1998 Workshop. (pp. 60-64), Menlo 
Park, CA: AAAI Press, Technical Report WS-98-08. 

2. Greening, Dan R. Collaborative Filtering for Web 
Marketing Efforts. Recommender Systems. Papers 
from the 1998 Workshop. (pp. 53-55), Menlo Park, 
CA: AAAI Press, Technical Report WS-98-08. 

3. Baudisch, Patrick (1998). Recommending TV Pro-
grams on the Web: How far can we get at zero user ef-
fort? Recommender Systems. Papers from the 1998 
Workshop. (pp. 16-18), Menlo Park, CA: AAAI Press, 
Technical Report WS-98-08. 

4. Bradley N. Miller, John T. Riedl, Joseph A. Konstan, 
Experiences with GroupLens: Making Usenet Useful 
Again, 1997 Usenix Annual Technical Conference, 
Anaheim, CA, 1997. 

5. David Maltz and Kate Ehrlich: Pointing the way: Ac-
tive collaborative filtering, CHI’95 Human Factors in 
Computing Systems, p. 202-209, 1995 

6. Jerry Kiernan, Michael J. Carey: Extending SQL-92 
for OODB Access: Design and Implementation Ex-
perience. OOPSLA 1995: 467-480 

 

 


